2017

Infectious Disease Dynamics Inferred from Genetic Data via Sequential Monte Carlo

R. A. Smith, E. L. Ionides, A. A. King

Molecular Biology and Evolution

April 8, 2017

ABSTRACT

Genetic sequences from pathogens can provide information about infectious disease dynamics that may supplement or replace information from other epidemiological observations. Most currently available methods first estimate phylogenetic trees from sequence data, then estimate a transmission model conditional on these phylogenies. Outside limited classes of models, existing methods are unable to enforce logical consistency between the model of transmission and that underlying the phylogenetic reconstruction. Such conflicts in assumptions can lead to bias in the resulting inferences. Here, we develop a general, statistically efficient, plug-and-play method to jointly estimate both disease transmission and phylogeny using genetic data and, if desired, other epidemiological observations. This method explicitly connects the model of transmission and the model of phylogeny so as to avoid the aforementioned inconsistency. We demonstrate the feasibility of our approach through simulation and apply it to estimate stage-specific infectiousness in a subepidemic of HIV in Detroit, Michigan. In a supplement, we prove that our approach is a valid sequential Monte Carlo algorithm. While we focus on how these methods may be applied to population-level models of infectious disease, their scope is more general. These methods may be applied in other biological systems where one seeks to infer population dynamics from genetic sequences, and they may also find application for evolutionary models with phenotypic rather than genotypic data.

Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA

Orr Ashenberg, Jai Padmakumar, Michael B. Doud, Jesse D. Bloom 

PLOS Pathogens

March 27, 2017

ABSTRACT

The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors.

Complete mapping of viral escape from neutralizing antibodies

Michael B. Doud, Scott E. Hensley, Jesse D. Bloom

PLOS Pathogens

March 13, 2017

abstract

Identifying viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a high-throughput approach to quantify the selection that monoclonal antibodies exert on all single amino-acid mutations to a viral protein. This approach, mutational antigenic profiling, involves creating all replication-competent protein variants of a virus, selecting with antibody, and using deep sequencing to identify enriched mutations. We use mutational antigenic profiling to comprehensively identify mutations that enable influenza virus to escape four monoclonal antibodies targeting hemagglutinin, and validate key findings with neutralization assays. We find remarkable mutation-level idiosyncrasy in antibody escape: for instance, at a single residue targeted by two antibodies, some mutations escape both antibodies while other mutations escape only one or the other. Because mutational antigenic profiling rapidly maps all mutations selected by an antibody, it is useful for elucidating immune specificities and interpreting the antigenic consequences of viral genetic variation.

Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward

Gerardo Chowell, Cécile Viboud,  Lone Simonsen, Stefano Merler, and Alessandro Vespignani

BMC Medicine

March 1, 2017

ABSTRACT

The unprecedented impact and modeling efforts associated with the 2014–2015 Ebola epidemic in West Africa provides a unique opportunity to document the performances and caveats of forecasting approaches used in near-real time for generating evidence and to guide policy. A number of international academic groups have developed and parameterized mathematical models of disease spread to forecast the trajectory of the outbreak. These modeling efforts often relied on limited epidemiological data to derive key transmission and severity parameters, which are needed to calibrate mechanistic models. Here, we provide a perspective on some of the challenges and lessons drawn from these efforts, focusing on (1) data availability and accuracy of early forecasts; (2) the ability of different models to capture the profile of early growth dynamics in local outbreaks and the importance of reactive behavior changes and case clustering; (3) challenges in forecasting the long-term epidemic impact very early in the outbreak; and (4) ways to move forward. We conclude that rapid availability of aggregated population-level data and detailed information on a subset of transmission chains is crucial to characterize transmission patterns, while ensemble-forecasting approaches could limit the uncertainty of any individual model. We believe that coordinated forecasting efforts, combined with rapid dissemination of disease predictions and underlying epidemiological data in shared online platforms, will be critical in optimizing the response to current and future infectious disease emergencies.

Dynamics affecting the risk of silent circulation when oral polio vaccination is stopped

J.S. Koopman, C.J. Henry, J.H. Park, M.C. Eisenberg, E.L. Ionides, J.N. Eisenberg

Epidemics

March 1, 2017

ABSTRACT

Waning immunity could allow transmission of polioviruses without causing poliomyelitis by promoting silent circulation (SC). Undetected SC when oral polio vaccine (OPV) use is stopped could cause difficult to control epidemics. Little is known about waning. To develop theory about what generates SC, we modeled a range of waning patterns. We varied both OPV and wild polio virus (WPV) transmissibility, the time from beginning vaccination to reaching low polio levels, and the infection to paralysis ratio (IPR). There was longer SC when waning continued over time rather than stopping after a few years, when WPV transmissibility was higher or OPV transmissibility was lower, and when the IPR was higher. These interacted in a way that makes recent emergence of prolonged SC a possibility. As the time to reach low infection levels increased, vaccine rates needed to eliminate polio increased and a threshold was passed where prolonged low-level SC emerged. These phenomena were caused by increased contributions to the force of infection from reinfections. The resulting SC occurs at low levels that would be difficult to detect using environmental surveillance. For all waning patterns, modest levels of vaccination of adults shortened SC. Previous modeling studies may have missed these phenomena because (1) they used models with no or very short duration waning and (2) they fit models to paralytic polio case counts. Our analyses show that polio case counts cannot predict SC because nearly identical polio case count patterns can be generated by a range of waning patterns that generate different patterns of SC. We conclude that the possibility of prolonged SC is real but unquantified, that vaccinating modest fractions of adults could reduce SC risk, and that joint analysis of acute flaccid paralysis and environmental surveillance data can help assess SC risks and ensure low risks before stopping OPV.

Persistent Arthralgia Associated with Chikungunya Virus Outbreak, US Virgin Islands, December 2014–February 2016

Leora R. Feldstein, Ali Rowhani-Rahbar, J. Erin Staples, Marcia R. Weaver, M. Elizabeth Halloran, and Esther M. Ellis

Emerging Infectious Diseases

April, 2017

ABSTRACT

After the 2014–2015 outbreak of chikungunya virus in the US Virgin Islands, we compared the prevalence of persistent arthralgia among case-patients and controls. Prevalence was higher in case-patients than controls 6 and 12 months after disease onset. Continued vaccine research to prevent acute illness and long-term sequelae is essential.

Locally Adaptive Smoothing with Markov Random Fields and Shrinkage Priors

James R. Faulkner and Vladimir N. Minin

Bayesian Analysis

February 24, 2017

ABSTRACT

We present a locally adaptive nonparametric curve fitting method that operates within a fully Bayesian framework. This method uses shrinkage priors to induce sparsity in order-kk differences in the latent trend function, providing a combination of local adaptation and global control. Using a scale mixture of normals representation of shrinkage priors, we make explicit connections between our method and kkth order Gaussian Markov random field smoothing. We call the resulting processes shrinkage prior Markov random fields (SPMRFs). We use Hamiltonian Monte Carlo to approximate the posterior distribution of model parameters because this method provides superior performance in the presence of the high dimensionality and strong parameter correlations exhibited by our models. We compare the performance of three prior formulations using simulated data and find the horseshoe prior provides the best compromise between bias and precision. We apply SPMRF models to two benchmark data examples frequently used to test nonparametric methods. We find that this method is flexible enough to accommodate a variety of data generating models and offers the adaptive properties and computational tractability to make it a useful addition to the Bayesian nonparametric toolbox.

Genome sequencing reveals Zika virus diversity and spread in the Americas

Metsky, H.C. , Matranga, C.B., Wohl, S., Schaffner, S.F., Freije, C.A., Winnicki, S.M., West, K., Qu, J., Baniecki, M.L., Gladden-Young, A., Lin, A.E., Tomkins-Tinch, C.H., Park, D.J., Luo, C.Y., Barnes, K.G., Chak, B., Barbosa-Lima, G., Delatorre, E., Vieira, Y.R., Paul, L.M., Tan, A.L., Porcelli, M.C., Vasquez, C., Cannons, A.C., Cone, M.R., Hogan, K.N., Kopp, E.W. IV, Anzinger, J.J., Garcia, K.F., Parham, L.A., Gélvez Ramírez, R.M., Miranda Montoya, M.C., Rojas, D.P., Brown, C.M., Hennigan, S., Sabina, B., Scotland, S., Gangavarapu, K., Grubaugh, N.D., Oliveira, G., Robles-Sikisaka, R., Rambaut, A., Gehrke, L., Smole, S., Halloran, M.E., Villar Centeno, L.A., Mattar, S., Lorenzana, I., Cerbino-Neto, J., Degrave, W., Bozza, P.T., Gnirke, A., Andersen, K.G., Isern, S., Michael, S., Bozza, F., Souza, T.M.L., Bosch, I., Yozwiak, N.L., MacInnis, B.L., Sabeti, P.C.

bioRxiv

February 18, 2017

Despite great attention given to the recent Zika virus (ZIKV) epidemic in the Americas, much remains unknown about its epidemiology and evolution, in part due to a lack of genomic data. We applied multiple sequencing approaches to generate 100 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analyzed the timing and patterns of introductions into distinct geographic regions, confirming phylogenetic evidence for the origin and rapid expansion of the outbreak in Brazil1 , and for multiple introductions from Brazil into Honduras, Colombia, Puerto Rico, other Caribbean islands, and the continental US. We find that ZIKV circulated undetected in many regions of the Americas for up to a year before the first locally transmitted cases were confirmed, highlighting the challenge of effective surveillance for this virus. We further characterize genetic variation across the outbreak to identify mutations with possible functional implications for ZIKV biology and pathogenesis.

The effective rate of influenza reassortment is limited during human infection

Ashley Sobel Leonard, Micah T. McClain, Gavin J. D. Smith, David E. Wentworth, Rebecca A. Halpin, Xudong Lin, Amy Ransier, Timothy B. Stockwell, Suman R. Das, Anthony S. Gilbert, Rob Lambkin-Williams, Geoffrey S. Ginsburg, Christopher W. Woods, Katia Koelle, Christopher J. R. Illingworth

Plos Pathogens

February 7, 2017

ABSTRACT

We characterise the evolutionary dynamics of influenza infection described by viral sequence data collected from two challenge studies conducted in human hosts. Viral genome sequence data were collected at regular intervals from infected hosts. Changes in the sequence data observed across time show that the within-host evolution of the virus was driven by the reversion of variants acquired during previous passaging of the virus. Treatment of some patients with oseltamivir on the first day of infection did not lead to the emergence of drug resistance variants in patients. Using an evolutionary model, we inferred the effective rate of reassortment between viral segments, measuring the extent to which randomly chosen viruses within the host exchange genetic material. We find strong evidence that the rate of effective reassortment is low, such that genetic associations between polymorphic loci in different segments are preserved during the course of an infection in a manner not compatible with epistasis. Combining our evidence with that of previous studies we suggest that spatial heterogeneity in the viral population may reduce the extent to which reassortment is observed. Our results do not contradict previous findings of high rates of viral reassortment in vitro and in small animal studies, but indicate that in human hosts the effective rate of reassortment may be substantially more limited.

Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus

Ashley Sobel Leonard, Daniel Weissman, Benjamin Greenbaum, Elodie Ghedin, Katia Koelle

bioRxiv

January 19, 2017

ABSTRACT

The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from a donor to a recipient host. Accurate quantification of the bottleneck size is of particular importance for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks would limit the extent of transferred viral genetic diversity and, thus, have the potential to slow the rate of viral adaptation. Previous studies have estimated the transmission bottleneck size governing viral transmission through statistical analyses of variants identified in pathogen sequencing data. The methods used by these studies, however, did not account for variant calling thresholds and stochastic dynamics of the viral population within recipient hosts. Because these factors can skew bottleneck size estimates, we here introduce a new method for inferring transmission bottleneck sizes that explicitly takes these factors into account. We compare our method, based on beta-binomial sampling, with existing methods in the literature for their ability to recover the transmission bottleneck size of a simulated dataset. This comparison demonstrates that the beta-binomial sampling method is best able to accurately infer the simulated bottleneck size. We then apply our method to a recently published dataset of influenza A H1N1p and H3N2 infections, for which viral deep sequencing data from inferred donor-recipient transmission pairs are available. Our results indicate that transmission bottleneck sizes across transmission pairs are variable, yet that there is no significant difference in the overall bottleneck sizes inferred for H1N1p and H3N2. The mean bottleneck size for influenza virus in this study, considering all transmission pairs, was Nb = 196 (95% confidence interval 66-392) virions. While this estimate is consistent with previous bottleneck size estimates for this dataset, it is considerably higher than the bottleneck sizes estimated for influenza from other datasets.