2018

Core pertussis transmission groups in England and Wales: A tale of two eras

Ana I. Bento, Maria A. Riolo, Yoon H. Choi, Aaron A. King, Pejman Rohani

Vaccine

February 1, 2018

ABSTRACT

The recent resurgence of pertussis in England and Wales has been marked by infant deaths and rising cases in teens and adults. To understand which age cohorts are most responsible for these trends, we employed three separate statistical methods to analyze high-resolution pertussis reports from 1982 to 2012. The fine-grained nature of the time-series allowed us to describe the changes in age-specific incidence and contrast the transmission dynamics in the 1980s and during the resurgence era. Our results identified infants and school children younger than 10 years of age as a core group, prior to 2002: pertussis incidence in these populations was predictive of incidence in other age groups. After 2002, no core groups were identifiable. This conclusion is independent of methodology used. Because it is unlikely that the underlying contact patterns substantially changed over the study period, changes in predictability likely result from the introduction of more stringent diagnostics tests that may have inadvertently played a role in masking the relative contributions of core transmission groups.

Resilience management during large-scale epidemic outbreaks

Emanuele Massaro, Alexander Ganin, Nicola Perra, Igor Linkov, Alessandro Vespignani

Scientific Reports

January 30, 2018

ABSTRACT

Assessing and managing the impact of large-scale epidemics considering only the individual risk and severity of the disease is exceedingly difficult and could be extremely expensive. Economic consequences, infrastructure and service disruption, as well as the recovery speed, are just a few of the many dimensions along which to quantify the effect of an epidemic on society’s fabric. Here, we extend the concept of resilience to characterize epidemics in structured populations, by defining the system-wide critical functionality that combines an individual’s risk of getting the disease (disease attack rate) and the disruption to the system’s functionality (human mobility deterioration). By studying both conceptual and data-driven models, we show that the integrated consideration of individual risks and societal disruptions under resilience assessment framework provides an insightful picture of how an epidemic might impact society. In particular, containment interventions intended for a straightforward reduction of the risk may have net negative impact on the system by slowing down the recovery of basic societal functions. The presented study operationalizes the resilience framework, providing a more nuanced and comprehensive approach for optimizing containment schemes and mitigation policies in the case of epidemic outbreaks.