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ABSTRACT
Many surveillance systems of infectious diseases are syndrome-based, capturing patients by clinical man-
ifestation. Only a fraction of patients, mostly severe cases, undergo laboratory validation to identify the
underlying pathogen. Motivated by the need to understand transmission dynamics and associate risk
factors of enteroviruses causing the hand, foot, and mouth disease (HFMD) in China, we developed a
Bayesian spatio-temporal modeling framework for surveillance data of infectious diseases with small
validation sets. A novel approach was proposed to sample unobserved pathogen-specific patient counts
over space and time and was compared to an existing sampling approach. The practical utility of this
framework in identifying key parameters was assessed in simulations for a range of realistic sizes of the
validation set. Several designs of sampling patients for laboratory validation were compared with and
without aggregation of sparse validation data. The methodology was applied to the 2009 HFMD epidemic in
southern China to evaluate transmissibility and the effects of climatic conditions for the leading pathogens
of the disease, enterovirus 71, and Coxsackie A16. Supplementary materials for this article are available
online.
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1. Introduction

More than often, a few genetically and antigenically related
infectious pathogens cause similar clinical symptoms in human
hosts. Some pathogens may be of more public health importance
than others, for example, associated with higher disease burden,
and it is important to understand the epidemiology of these
pathogens. For example, a spectrum of enteroviruses (EV) are
causative agents for the hand, foot, and mouth disease (HFMD),
a mild disease commonly seen in children under six years of
age. However, neurological complications occasionally occur, in
particular in children infected with EV71 (Wang et al. 2011).
The surveillance system for HFMD in China, like those for many
other infectious diseases, is based on clinical diagnosis, that is,
with respect to characteristics of symptoms. This system logged
a half million cases in 2008, the first year of its deployment, and
1–2 million cases annually thereafter (Xing et al. 2014). Due
to logistic constraints, less than 3% of HFMD cases underwent
laboratory confirmation to identify the exact causative virus.
It is not clear whether the current sampling practice of vali-
dation data for the epidemics of HFMD in China is sufficient
to uncover the largely unobserved pathogen-specific spatio-
temporal dynamics and to quantify associated epidemiological
parameters.

Aggregation of the laboratory data over a greater geographic
area or a time period is a common practice for analyzing
surveillance data and can be used to improve identifiability
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of model parameters. When analyzing the HFMD dynamics at
the provincial level in China, Takahashi et al. (2016) aggregated
the laboratory data by region and month, where each region
is composed of typically four provinces, but uncertainty in the
laboratory data was ignored. Using the same data but with an
aggregation by province, Van Boeckel et al. (2016) modeled
each pathogen separately by assuming a binomial distribution
for the pathogen-specific case count with the sample proportion
in the validation set as the probability. This approach is unlikely
to address the uncertainty adequately, as a zero count for a
pathogen could occur in a small validation set with a nontrivial
probability even if that pathogen contributed substantially to
the clinical cases. In addition, it has been shown that joint
modeling of multiple pathogens could outperform modeling
each pathogen separately (Fisher et al. 2017). Fisher et al.
(2017) proposed a multivariate hypergeometric structure to
fully account for uncertainty in laboratory confirmation, and
analyzed the HFMD surveillance data at the multi-province
regional level, where each region was stratified by age group
and gender. They used an empirical Bayes approach to estimate
the pathogen-specific case counts for each region and week.
However, the transmission nature of the disease, that is, the
dependence of the disease risk of susceptible individuals on the
number of existing infectious individuals, was ignored.

While aggregation of sparse laboratory data reduces uncer-
tainty in the estimation of pathogen-specific case numbers,
it is likely that aggregation across large areas introduces
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ecological bias in these estimated numbers when the inference
is conducted at a finer spatial scale. As a result, a systematic
study of the statistical performance of aggregation is needed
to ensure proper interpretation of epidemiological parameters
estimated from aggregated data. In addition, the sampling of
clinical cases for laboratory confirmation is often spatially or
temporally imbalanced. Conditioning on the same number
of sampled cases, would a homogeneous (random) sampling,
where the probability of being sampled is constant over space
and time, be a better alternative? These issues are extremely
relevant to the policy of virological surveillance in general.

Motivated by the HFMD surveillance data in China, we
propose to study the above issues by designing a general
modeling framework for surveillance data of multiple infectious
pathogens with a laboratory validation subset. Traditional
models for infectious disease transmission either do not
consider partially observed infection outcomes (Brix and
Diggle 2001; Paul, Held, and Toschke 2008; Meyer and Held
2014) or address such issues at the individual rather than the
population level (Scharfstein et al. 2006; Yang et al. 2010, 2014).
As was mentioned before, existing methods for population level
surveillance data of multiple pathogens either inadequately
account for uncertainty in laboratory confirmation (Takahashi
et al. 2016; Van Boeckel et al. 2016) or do not focus on
transmissibility of the disease (Fisher et al. 2017), nor do
they account for spatial dependence in pathogen-specific case
numbers. The proposed Bayesian framework uses a latent
spatio-temporal process model for the unobserved pathogen-
specific transmission dynamics, which links the observed non-
pathogen-specific case counts and laboratory validation data
and thereby accounts for important sources of correlation and
uncertainty. The performance of this framework under a variety
of sampling schemes for the validation subset is assessed in
simulation studies. The method is then used to quantify the
transmissibility and environmental risk determinants of EV71
and Coxsackie A16 (CA16), two driving pathogens for the
epidemic of the HFMD in southern China during 2009.

2. Data and Notation

The HFMD surveillance data were provided by the Chinese
Center for Disease Control and Prevention (CCDC), cover-
ing the year of 2009 and all 69 prefectures in five southern
provinces (Guangdong, Guangxi, Hunan, Jiangxi, and Fujian)
with an average population size of 0.41 million per prefec-
ture. Prefecture is an administrative unit between province and
county. HFMD epidemics are known to be highly seasonal and
affected by climatic conditions (Wang et al. 2011; Xing et al.
2014). Weekly averages of temperature, relative humidity, and
wind speed during 2009 for each prefecture in this subtropical
region were obtained from the National Oceanic and Atmo-
spheric Administration of the United States. Demographic data
such as the area and population size of each prefecture were
obtained from Chinese Bureau of Statistics. During 2009, a total
of 210,628 clinical cases were reported in the study region,
of which 4980 (2.36%) were lab-validated. Figure S1 in the
online appendix (supplementary materials) shows the spatial
and temporal distributions of all cases as well as lab-validated
cases. The sampling probability for lab-validation among severe

cases, 71.5%, is much higher than 2.18% among mild cases, but
the number of severe cases itself is small, 571 in total (online
appendix, Table S1, supplementary materials). The clinical def-
inition of mild and severe HFMD cases adopted by CCDC was
described elsewhere (Wang et al. 2011). The imbalance in the
spatial and temporal distributions of the sampling probability is
shown in both Table S1 and Figure S1 (supplementary materi-
als), regardless of disease severity. Among lab-validated cases,
the distributions of pathogen types also differ considerably in
both space and time regardless of disease severity, as shown in
Table S2 (supplementary materials). Such imbalance indicates
the potential for biased estimation of pathogen-specific case
numbers at the prefecture level and pathogen-specific parame-
ters that are defined at the individual level, if the laboratory data
are aggregated over large space and time domains.

We choose week as the time unit since the incubation period
of HFMD is approximately one week (Goh et al. 1982). Without
loss of generality, suppose there are R prefectures, T weeks, V
pathogens, and S disease severity levels. Let Y(vs)

it be the number
of cases in prefecture i with symptom onset during week t who
were infected by pathogen v and had disease severity level s, i =
1, . . . , R, t = 1, . . . , T, v = 1, . . . , V , and s = 1, . . . , S. In reality,
we only observe the total number of clinical cases aggregated by
severity, Y(+s)

it = ∑V
v=1 Y(vs)

it , instead of the pathogen-specific
numbers. Among the Y(+s)

it clinical cases, Z(+s)
it = ∑V

v=1 Z(vs)
it

patients are lab-validated, where Z(vs)
it is the number of lab-

validated patients attributed to pathogen v. All the numbers of
lab-validated patients are observed. For most diseases, patients
with severe symptoms are more likely to be sampled for lab-
oratory validation. It is, however, not unreasonable to assume
that the sampling is independent of the underlying pathogen
conditioning on the severity level. That is, we assume the Z(+s)

it
lab-confirmed patients are representative of the Y(+s)

it patients
in space-time (i, t) and severity level s.

3. Methods

3.1. Transmission

Enteroviruses can sustain in groundwater and soil, forming
possible environmental reservoir. They are also known to be
passed from person to person by close contact. As a result, we
consider both transmission routes, referred to as environment-
to-human and human-to-human. For susceptible people in any
prefecture i, the transmission rate from environmental reservoir,
E(v)

it , is modeled as

log
(

E(v)
it

)
= log(γ (v)

E ) + X′
E,itη

(v)
E , (1)

where γ
(v)
E is the pathogen-specific baseline transmission rate.

The coefficient vector η
(v)
E characterizes the effect of covariates,

XE,it , on environment-to-human transmission.
For human sources of infection, we consider local transmis-

sions within each prefecture and between neighboring prefec-
tures, but ignore long-distance transmission between nonadja-
cent prefectures partly because children, the majority of HFMD
cases, usually do not travel far. Denote the set of neighboring
prefectures of prefecture i by �i and the number of neighbors
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by ωi, and let �̄i = �i ∪ {i}. Let 1(·) be the indicator function.
The human-to-human transmission rate from prefecture j to
prefecture i, H(v)

ij,t , is modeled as

log
(

H(v)
ij,t

)
= 1(j=i) log(γ (v)

H1 ) + 1(j∈�i) log(γ (v)
H2 )

+ X′
H,itη

(v)
H + α

(v)
i + β

(v)
t , (2)

where γ
(v)
H1 and γ

(v)
H2 are baseline human-to-human transmission

rates within the same prefecture and between adjacent prefec-
tures, respectively. For notational simplicity, we assume the two
types of human-to-human transmission share the same effect
η

(v)
H of the same collection of covariates X′

H,it . To account for
both spatial heterogeneity and dependence, we include a spatial
random effect α(v)

i , for which we assume an intrinsic conditional
autoregressive (ICAR) structure with variance σ 2

α(v) :

α
(v)
i |α(v)

j , j ∈ �i ∼ N

⎛
⎝ 1

ωi

∑
j∈�i

α
(v)
j ,

σ 2
α(v)

ωi

⎞
⎠ , (3)

subject to the constraint
∑R

i=1 α
(v)
i = 0 for each pathogen type

v, as all prefectures constitute a connected graph (Gelfand et al.
2010). The temporal variation β

(v)
t is modeled using regression

splines as

β
(v)
t = b�(t)′η(v)

B =
K∑

k=1
η

(v)
Bk b�

k(t), (4)

where η
(v)
B = (η

(v)
B1 , . . . , η(v)

BK)′ are the coefficients, and b�(t) =(
b�

1(t), . . . , b�
K(t)

)′ are the centered cubic B-spline basis func-
tions, that is, b∗

k(x) = bk(x) − 1
T
∫ T

0 bk(y)dy based on the
regular B-spline basis functions bk(x), k = 1, . . . , K. To better
capture the curvature of the temporal trend, we place three
inner knots at weeks 20, 30, and 40 near the two peaks and the
valley of the epidemic curve, and two external knots at weeks 1
and 53 (Figure S1(A), supplementary materials). The temporal
term in our model satisfies the constraint

∫ T
0 β

(v)
t dt = 0, so

that the baseline transmission rates are identifiable and can be
interpreted as the mean rates over time. There are K = 6 basis
functions in total.

To calculate the incidence rate in each space-time unit, we
make the following assumptions about the natural history of
disease for HFMD. First, the HFMD has an incubation period
(time from infection to symptom onset) of about one week, that
is, cases with symptom onset in week t were infected in week
t−1. Second, we assume a case is infectious for one week, that is,
during the symptom onset week. This assumption is reasonable
because (i) symptoms of the HFMD usually resolve in a week;
(ii) children diagnosed with HFMD might have been home-
quarantined or hospitalized if requested by physicians according
to the prevention and control guidelines issued by CCDC since
2009 (Chan et al. 2017); and (iii) the infectiousness level via
human-to-human contact during the second week was likely
much lower than the first week with symptom onset (Wang et al.
2011). Under these assumptions, the disease incidence rate at the
individual level is given by

λ
(v)
it = E(v)

i,t +
∑
j∈�̄i

H(v)
ij,t Y(v+)

j(t−1). (5)

We adjust λ
(v)
it for covariates at the time of disease onset (t), but

one can also adjust it for covariates at the time of infection (t −
1). As the prefecture-level population size is large, a common
practice is to assume that the number of new cases in each space-
time unit follows a Poisson distribution, that is,

Y(v+)
it | Y(v+)

it− ∼ Poisson
(

S(v)
i(t−1)λ

(v)
it

)
, (6)

where Y(v+)
it− = {

Y(v+)
j(t−1) : j ∈ �̄i

}
represents the set of historical

cases who contributed to the generation of Y(v+)
it , and S(v)

it is the
number of people susceptible to pathogen v at t. In practice, S(v)

it
is often approximated by the population size Ni when the major-
ity of the population is susceptible (as in the case of HFMD in
China during 2009) or the disease is endemic (S(v)

it is stable over
time). A previous investigation on the same epidemic found an
alternative assumption, Y(v+)

it | Y(v+)
it− ∼ Poisson

(
λ

(v)
it

)
, to pro-

vide more satisfactory fit to the data than Equation (6), though
the interpretation of λ

(v)
it would change from the individual

level to the population level (Wang et al. 2011). Consequently,
we assume Y(v+)

it | Y(v+)
it− ∼ Poisson

(
λ

(v)
it

)
throughout this

investigation.

3.2. Pathogenicity

For the HFMD surveillance data, it is sufficient to consider two
severity levels (S = 2): mild (s = 1) and severe (s = 2).
Given the pathogen-specific case count Y(v+)

it , we assume that
the number of mild cases follows a binomial distribution

Y(v1)
it | Y(v+)

it ∼ Binomial
(

Y(v+)
it , p(v)

it

)
, (7)

where p(v)
it is the probability of developing mild disease for a

person in region i who was infected with pathogen v and had
symptom onset during week t. Pathogenicity is adjusted for
covariates XP,it via the regressions

g(p(v)
it ) = g(p(v)

0 ) + X′
P,itη

(v)
P , (8)

where g(p) is an appropriate link function, p(v)
0 is the baseline

probability of being mild given infection, and η
(v)
P is the covari-

ate coefficients specific to pathogen v. As the majority of HFMD
cases are mild (p(v)

0 ≈ 1), the complementary log-log link
function, g(p) = cloglog(p) = log(− log(1−p)), is a reasonable
choice to better differentiates covariate effects. When p(v)

0 is not
close to 1, the logit transformation may be appropriate. It is
convenient to combine infection and pathogenicity into a single
Poisson structure, conditioning on historic cases and relevant
parameters:

Y(v1)
it | Y(v+)

it− ∼ Poisson
(
λ

(v)
it p(v)

it
)

and

Y(v2)
it | Y(v+)

it− ∼ Poisson
(
λ

(v)
it (1 − p(v)

it )
)
. (9)
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3.3. Laboratory Validation

To link the unknown number of cases, Y(vs)
it , to the observed

number of lab-validated cases, Z(vs)
it , we assume that, con-

ditioning on severity level, the sampling of cases for lab-
validation is random and thus, independent of the underlying
pathogen. As a result, the sampling process itself is ignorable
(Daniels and Hogan 2008). Given the total number of vali-
dated cases, Z(+s)

it , and the pathogen-specific case numbers,
Y(1s)

it , . . . , Y(Vs)
it , of severity level s in prefecture i and week t, we

assume that the numbers of pathogen-specific lab-validated
cases, Z(1s)

it , . . . , Z(Vs)
it , follow a multivariate hypergeometric

distribution (Fisher et al. 2017):

Pr
(

Z(1s)
it , . . . , Z(Vs)

it | Z(+s)
it , Y(1s)

it , . . . , Y(Vs)
it

)
=
∏V

v=1

(Y(vs)
it

Z(vs)
it

)
(Y(+s)

it
Z(+s)

it

) .

(10)

To investigate how inference is influenced by aggregation
of laboratory validation data, we explore two aggregation
schemes: (1) aggregation by neighborhood and (2) aggregation
by province. The latter was used by Van Boeckel et al. (2016) and
is more aggressive than the former, as the number of prefectures
ranges 10–20 in a province and 3–8 in a neighborhood �̄i.
Aggregation by region (4–5 provinces) in previous analyses
is not considered here as our study area contains only five
provinces. Let

A(s)
it = {(j, τ) : j ∈ �̄i and |t − τ | ≤ 2 and Z(+s)

jτ > 0}
be the collection of prefecture i and its neighbors and weeks
close to t, where lab-validation was performed on cases of sever-
ity category s. Analogously, define the provincial-level collection

B(s)
it = {(j, τ) : j in the same province of i and

|t − τ | ≤ 2 and Z(+s)
jτ > 0}.

Let ρ(A(s)
it ) = ∑

(j,τ)∈A(s)
it

Z(+s)
jτ /

∑
(j,τ)∈A(s)

it
Y(+s)

jτ be the
validation proportion aggregated by neighborhood, and let
ξv(A(s)

it ) = ∑
(j,τ)∈A(s)

it
Z(vs)

jτ /
∑

(j,τ)∈A(s)
it

Z(+s)
jτ be the propor-

tion of pathogen v in the aggregated validation set. Similarly
define ρ(B(s)

it ) and ξv(B(s)
it ) for the aggregation by province.

For any prefecture i and week t, if Y(+s)
it > 0, the aggregation

schemes are:

• By neighborhood: If ρ(A(s)
it ) > 0 and Z(+s)

it
Y(+s)

it
< ρ(A(s)

it ),

set Ẑ(+s)
it = Y(+s)

it ρ(A(s)
it ) and Ẑ(vs)

it = Ẑ(+s)
it ξv(A(s)

it ). If
ρ(A(s)

it ) = 0, use aggregation by province.

• By province: If Z(+s)
it

Y(+s)
it

< ρ(B(s)
it ), set Ẑ(+s)

it = Y(+s)
it ρ(B(s)

it ) and

Ẑ(vs)
it = Ẑ(+s)

it ξv(B(s)
it ).

For either scheme, in Equation (10), replace Z(+s)
it with Ẑ(+s)

it
and Z(vs)

it with Ẑ(vs)
it . If ρ(B(s)

it ) = 0, which is very rare, no
further aggregation is pursued for prefecture-week (i, t) and its
lab-validation component does not contribute to the likelihood.

3.4. Likelihood

Define Y = {Y(vs)
it , i = 1, . . . , R, s = 1, 2, t =

1, . . . , T, v = 1, . . . , V} and Y+ = {Y(+s)
it , i = 1, . . . , R, s =

1, 2, t = 1, . . . , T}, and similarly define Z and Z+. Let
θ (v) = (γ

(v)
E , γ (v)

H1 , γ (v)
H2 , σ 2

α(v) , p(v)
0 , η(v)

E , η(v)
H , η(v)

P , η(v)
B )′ and

α(v) = (α
(v)
1 , . . . , α(v)

R )′. Let θ = {
θ (v) : v = 1, . . . , V

}
and

α = {
α(v) : v = 1, . . . , V

}
. The joint probability density of

complete data is given by
f (Z, Z+, Y, α | θ) = f (Z | Y, Z+)f (Z+ | Y)f (Y | α, θ)f (α | θ),

(11)
where

f (Z | Y, Z+) =
R∏

i=1

T∏
t=1

2∏
s=1

(Y(+s)
it

Z(+s)
it

)−1 V∏
v=1

(Y(vs)
it

Z(vs)
it

)
,

f (Y | α, θ) ∝
R∏

i=1

T∏
t=1

V∏
v=1

exp(−λ
(v)
it )

⎧⎨
⎩
(
λ

(v)
it p(v)

it
)Y(v1)

it

Y(v1)
it !

(
λ

(v)
it (1 − p(v)

it )
)Y(v2)

it

Y(v2)
it !

⎫⎬
⎭ ,

(12)
and

f (α | θ) ∝
V∏

v=1
(σ 2

α(v) )
− R−G

2

× exp

⎡
⎣− 1

4σ 2
α(v)

R∑
i=1

∑
j∈�i

(α
(v)
i − α

(v)
j )2

⎤
⎦ . (13)

The component f (Z+ | Y) in Equation (11), which is equivalent
to f (Z+ | Y+), does not involve unknown quantities related to
transmission or pathogenicity and can be omitted in posterior
inference. In Equation (13), G is the number of isolated sets of
connected prefectures (Gelfand et al. 2010). For the surveillance
data we consider, G = 1. The multiplier of the variance in the
exponential term is four because each pair of neighboring α

(v)
i

and α
(v)
j appears twice in the numerator. A schematic plot of the

primary model structure is shown in Figure S2 (supplementary
materials).

3.5. Priors

We assume θ (1), . . . , θ (V) are mutually independent a priori.
For a given pathogen v, the elements of θ (v) are also assumed
to be independent. To avoid impropriety of the posterior, we
put proper but weakly informative priors on these parameters.
A gamma prior is used for each of the environment-to-human
and human-to-human transmission rates, but the shape and rate
differ slightly between simulations and the case study, (0.1, 0.1)
in the former and (1.0, 0.5) in the latter. For both simulations
and the case study, an inverse gamma prior with a shape of
2.1 and a rate of 1.0 is assumed for σ 2

α(v) , and a normal prior
with a zero mean and a variance of 1000 is assumed for the
coefficients, (η(v)

E , η(v)
H , η(v)

P , η(v)
B ), and the baseline pathogenicity

parameters, cloglog(p(v)
0 ). We compare the posteriors to the

priors in simulations and examine the sensitivity of the case
study results to the hyperparameters of the priors.
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3.6. Posteriors and Inference

Let C denote the set of values of Y satisfying two constraints:
V∑

v=1
Y(vs)

it = Y(+s)
it , i = 1, . . . , R, t = 1, . . . , T, s = 1, 2, (14)

and

Y(vs)
it ≥ Z(vs)

it , i = 1, . . . , R, t = 1, . . . , T, s = 1, 2,
v = 1, . . . , V . (15)

The joint posterior density of θ and α conditional on the data Z
and Y+ is given by

π(θ , α | Z, Y+) ∝
∑
Y∈C

f (Z | Y, Z+)f (Y | α, θ)f (α | θ)π(θ).

(16)

Since the posterior density is complex and cannot be sam-
pled from exactly, we use Monte Carlo Markov chain (MCMC)
methods such as a Gibbs sampler (Gelfand and Smith 1990) to
obtain posterior samples. However, the size of C is excessively
large, making the summation in Equation (16) impractical. To
circumvent this difficulty, we consider sampling from the joint
posterior density

π(θ , α, Y | Z, Y+) ∝ f (Z | Y, Z+)f (Y | α, θ)f (α | θ)π(θ)1(Y∈C).
(17)

Except for the variances σ 2
α(v) , v = 1, . . . , V , which can be

drawn directly from an inverse gamma distribution, the full
conditional distributions of all other quantities in θ , as well as
α and Y, are not in standard forms. We use a Metropolis step
to sample θ and α. Wakefield et al. (2011) used a Markov basis
sampling (MBS) method to sample each individual Y(vs)

it in a
model for pathogenicity but without transmission. However,
in preliminary analyses of the HFMD data, we encountered
convergence issues with this method. We propose to use a
multinomial proposal for sampling Y(s)

it = (Y(1s)
it , . . . , Y(Vs)

it )′
for given i, t and s. According to the joint probability Equation
(11), the full conditional distribution of Y(s)

it , conditioning on
all other random quantities as well as their sum Y(+s)

it , can be
rewritten as

l(Y(s)
it )

V∏
v=1

(λ
(v)
it p̃(vs)

it )Y(vs)
it

Y(vs)
it !

(Y(vs)
it

Z(vs)
it

)

∝ l(Y(s)
it )

V∏
v=1

(λ
(v)
it p̃(vs)

it )Y(vs)
it −Z(vs)

it

(Y(vs)
it − Z(vs)

it )!
, (18)

where p̃(vs)
it = 1s=1p(v)

it + 1s=2(1 − pv
it), and l(Y(s)

it ) =∏
j∈�̄i

∏V
v=1 exp(−λ

(v)
j(t+1))

(
λ

(v)
j(t+1)

)Y(v+)
j(t+1) contains all transmis-

sion risks imposed by the Y(s)
it cases of prefecture i through

λ
(v)
j(t+1) on the neighboring prefectures during their infectious

week t + 1. Let Z(s)
it = (Z(1s)

it , . . . , Z(Vs)
it )′. This expression

suggests we can sample Y(s)
it − Z(s)

it from a multinomial
distribution with size Y(+s)

it − Z(+s)
it and a probability vector of

normalized (λ
(1)
it p̃(1s)

it , . . . , λ(V)
it p̃(Vs)

it )′. Denoting the new sample

by Y(�s)
it , we then accept it with probability l(Y(�s)

it )/l(Y(s)
it ).

This Metropolized independence sampling (MIS) approach
works well when the proposal provides a reasonable coverage
of the domain of Y(�s)

it (Chib and Greenberg 1995; Liu 1996).
The sampling approaches for spatial random effects α and
parameters θ are described in Section 1 of the online appendix
(supplementary materials).

To evaluate the performance of a given simulation setting, we
examine the distributions of a mixing statistic and the posterior
mean squared error (PMSE) calculated for each parameter over
simulated epidemics. For a parameter with true value θ0 and
posterior samples {xij : i = 1, . . . , m; j = 1, . . . , n}, where
i and j index chain and iteration, respectively, the PMSE is
defined as 1

mn
∑m

i=1
∑n

j=1(xij − θ0)
2, and the mixing statistic

is calculated as m(n−1)
m−1

∑m
i=1(x̄i·−x̄··)2∑m

i=1
∑n

j=1(xij−x̄··)2 , where x̄i· = 1
n
∑n

j=1 xij

and x̄·· = 1
mn
∑m

i=1
∑n

j=1 xij. This statistic plus 1 approximates
the Gelman–Rubin statistic (Gelman 1995).

3.7. Extension to Multiple Severity Categories and a
Longer Infectious Period

When S > 2, one can use a nested binomial structure given by

Y(vs)
it |

S∑
k=s

Y(vk)
it ∼ Binomial

( S∑
k=s

Y(vk)
it , p(vs)

it

)
,

s = 1, . . . , S − 1, (19)

where p(vs)
it is the probability of falling into severity category s

given that the severity is of level s or higher for a person in region
i who was infected with pathogen v and had symptom onset
during week t. For example, if S = 3 and s = 1, 2, 3 represent
mild, severe outpatient and severe hospitalized, respectively,
p(v1)

it is the probability of the disease being mild, and p(v2)
it is

the probability of being outpatient given that the disease is
severe. Similar to the two-category scenario, pathogenicity is
adjusted for covariates via g(p(vs)

it ) = g(p(vs)
0 )+ X′

P,itη
(vs)
P , where

the baseline probabilities, p(vs)
0 , and the covariate coefficients,

η
(vs)
P , are now specific to severity category s, s = 1, . . . , S − 1.

The nested binomial parameterization uniquely determines a
multinomial structure via the transformation p̃(v1)

it = p(v1)
it ,

p̃(vS)
it = ∏S−1

k=1(1 − p(vk)
it ) and p̃(vs)

it = p(vs)
it
∏s−1

k=1(1 − p(vk)
it ),

s = 2, . . . , S − 1, such that

(Y(v1)
it , . . . , Y(vS)

it ) ∼ Multinomial(Y(v+)
it , p̃(v)

it ), (20)

where p̃(v)
it = (p̃(v1)

it , . . . , p̃(vS)
it )′. In the nested binomial parame-

terization, {p(vs)
0 , η(vs)

P : s = 1, . . . , S − 1} can be independently
sampled without violating the intrinsic constraint

∑S
s=1 p̃(vs)

it =
1. Combining infection and pathogenicity into a single Poisson
structure, we have Y(vs)

it | Y(v+)
it− ∼ Poisson(λ

(v)
it p̃(vs)

it ), s =
1, . . . , S, and Equation (12) becomes

f (Y | α, θ) ∝
R∏

i=1

T∏
t=1

V∏
v=1

exp(−λ
(v)
it )

{ S∏
s=1

(λ
(v)
it p̃(vs)

it )Y(vs)
it

Y(vs)
it !

}
.

(21)
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To extend the model to an infectious period of multiple
weeks, let d be the duration of the infectious period, and assume
the infectiousness level decays exponentially with a weekly
reduction rate of ρ, where 0 < ρ < 1. Under these assumptions,
the disease incidence rate in Equation (5) now takes the form

λ
(v)
it = E(v)

i,t +
t−1∑

τ=t−d

∑
j∈�̄i

ρt−1−τ H(v)
ij,t Y(v+)

jτ . (22)

and Y(v+)
it− in Equation (6) need to be redefined as

{
Y(v+)

jτ : j ∈
�̄i, τ = t − d, . . . , t − 1

}
. In addition, l(Y(s)

it ) in Equation (18)

should be rewritten as
∏

j∈�̄i

∏t+d−1
τ=t

∏V
v=1 exp(−λ

(v)
jτ )
(
λ

(v)
jτ
)Y(v+)

jτ

to account for multiple infectious weeks of the Y(s)
it cases. The

additional parameter, ρ, may not be identifiable in all settings.

4. Simulation Studies

Using the 69 prefectures in southern China as a template, we
simulated epidemics of three pathogens with two severity cate-
gories, mild and severe, based on the proposed model, keeping
the total number of cases comparable to the real epidemic in
2009 in the same area. The epidemic in each prefecture started
with either one case or none, each with probability 0.5, in the
first week. For simplicity, we let the infectious period to be one
week (d = 1), and only temperature was considered as a linear
covariate for both transmission and pathogenicity. A total of
100 epidemics were generated for each scenario discussed below.
Each epidemic was analyzed with five parallel chains.

We first assessed identifiability of parameters for three sam-
pling proportions of cases for lab-validation: 2%, 5%, and 10%,
coupled with two sampling designs: (1) balanced design, where
all prefecture-weeks share a common validation proportion; and
(2) imbalanced design, where a subset of prefecture-weeks was
chosen and the validation proportions in these units were scaled
to reach an overall validation proportion similar to the balanced
design. The sampling proportion among severe cases was set to
70% uniformly for all prefecture-weeks and simulation settings.
As the majority of cases were mild, the overall sampling propor-
tion among mild cases was close to that among all cases. For
the imbalanced design, the selection of prefecture-weeks was
based on fitted probabilities derived from a logistic regression
of presence of laboratory validation on prefecture-specific tem-
poral smoothing splines. This was to mimic the spatio-temporal
imbalance in the presence/absence of lab-validation in reality.
To achieve an overall proportion of 2% for the imbalanced
design, prefecture-weeks with fitted probabilities above 40% for
the presence of lab-validation were selected and the validation
proportions among mild cases in these prefecture-weeks were
set to 13.3%. When the overall proportion was increased to
5% and 10%, we explored two variations of the imbalanced
design: (I) increasing the validation proportion while fixing the
number of lab-validated prefecture-weeks; or (II) increasing the
number of prefecture-weeks with lab-validation while keeping
the validation proportion unchanged.

The sample mean and standard deviation of the posterior
means over 100 simulated epidemics for each parameter are
presented in Table 1 for 2% versus 10% and in Table S4 (supple-
mentary materials) for 2% versus 5%. Under the balanced design

with a 2% lab-validation, most parameters, except for the covari-
ate effects associated with environment-to-person transmission
(η(v)

E , v = 1, . . . , 3), were reasonably identified with no or
moderate bias and small standard deviations (SD). The difficulty
in estimating η

(v)
E s is likely due to the fact that the magnitude of

the environment-to-person transmission rate is relatively small
such that the environmental exposure accounts for much fewer
infections than infectious human cases for most of the time and
places (see Section 2 and Table S3 in the online appendix, sup-
plementary materials for a simplified simulation study showing
such a possibility). Interestingly, the identifiability of the same
parameter varied between pathogens, for example, the estimates
of γ

(3)
E , γ

(3)
H2 , and η

(3)
P for pathogen 3 seemed more biased

than those for the other two pathogens. Such heterogeneity
resulted from the fact that different parameter values between
the pathogens yielded different epidemic scales that contained
different amounts of information for inference. Increasing the
lab-validation proportion from 2% to 10% did in general reduce
both biases and SDs. The greatest reduction in SD occurred for
γ

(v)
H1 , γ

(v)
H2 , and η

(v)
E , v = 1, . . . , 3. Bias decreased substantially

for η
(v)
E and also notably for γ

(v)
E (v = 1, 3), γ

(3)
H1 and η

(3)
P .

The SDs for pathogenicity parameters, p(v)
0 ’s and η

(v)
P ’s, were

not affected much by the increase in lab-validation proportion,
because the increase mainly occurred among mild cases but not
among severe cases, as in reality the latter was already densely
sampled. Consequently, pathogenicity parameters benefit much
less from increasing lab-validation, and stochastic fluctuation
dominated the SDs of their estimators.

In general, the imbalanced designs were associated with
slightly larger biases and moderately larger SDs for transmission-
related parameters, but performed similarly for pathogenicity-
related parameters (except for η

(3)
p ), compared to the balanced

design under the same lab-validation proportion (Table 1).
With 10% lab-validation, imbalanced design II outperformed
design I in terms of smaller bias and variation for most
parameters, suggesting that, given limited resources, it may
be more fruitful to cover a wider range of locations than to
sample more patients at a limited number of locations. The
distributions of the mixing statistic and the PMSE over the
100 simulated epidemics are shown for the transmission rates
and cloglog(p(v)

0 ) in Figure 1, covariate effects in Figure S3
(supplementary materials), and spatial effects α(v) and temporal
effects η

(v)
B in Figure S4 (supplementary materials), with all

parameters averaged over the three pathogens. These figures
confirm the superiority of the balanced design over imbalanced
designs, as well as sampling more locations with fixed lab-
validation proportions over sampling more patients at fixed
locations, in terms of both mixing and PMSE for estimating
transmission rates and the associated covariate coefficients. The
superiority of imbalanced design II over design I was more
evident when the validation proportion was high, that is, at 10%
versus at 5%, as shown by PMSE in these figures. The results
for the validation proportion of 2% provide no information
for comparing the two imbalanced designs, as they are exactly
the same in our simulation setup. The pathogenicity-related
parameters, p(v)

0 (Figure 1) and η
(v)
P (Figure S3, supplementary

materials), had better mixing under the balanced design than
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Table 1. Average posterior means of pathogen-specific transmission and pathogenicity parameters over 100 simulated epidemics, stratified by sampling design (balanced,
imbalanced I, and imbalanced II) and lab-validation proportion (2% and 10%).

Average posterior mean SD of posterior means

Imbalanced Imbalanced

Parameter True Balanced 10% Balanced 10%

value 2% 10% 2% I† II‡ 2% 10% 2% I† II‡

γ
(1)

E 1 0.90 0.99 0.89 0.92 0.93 0.130 0.113 0.160 0.146 0.124
γ

(2)
E 1 1.06 1.06 1.04 1.05 1.07 0.165 0.137 0.170 0.164 0.147

γ
(3)

E 1 1.29 1.17 1.32 1.26 1.21 0.130 0.092 0.139 0.125 0.118
γ

(1)
H1 0.5 0.51 0.49 0.52 0.51 0.51 0.038 0.031 0.039 0.036 0.027

γ
(2)

H1 0.5 0.46 0.46 0.46 0.46 0.46 0.042 0.030 0.049 0.041 0.032
γ

(3)
H1 0.5 0.43 0.46 0.41 0.42 0.45 0.037 0.028 0.043 0.038 0.037

γ
(1)

H2 0.05 0.053 0.052 0.053 0.054 0.053 0.0048 0.0043 0.0057 0.0055 0.0045
γ

(2)
H2 0.05 0.049 0.049 0.048 0.048 0.049 0.0056 0.0043 0.0064 0.0056 0.0049

γ
(3)

H2 0.05 0.041 0.043 0.040 0.041 0.042 0.0048 0.0041 0.0048 0.0043 0.0040
cloglog(p(1)

0 ) 1.61 1.61 1.61 1.61 1.62 1.61 0.014 0.014 0.014 0.015 0.013
cloglog(p(2)

0 ) 1.79 1.80 1.79 1.80 1.80 1.79 0.020 0.020 0.019 0.018 0.017
cloglog(p(3)

0 ) 1.71 1.71 1.71 1.71 1.70 1.71 0.014 0.014 0.014 0.016 0.014
η
(1)
P −0.15 −0.16 −0.15 −0.16 −0.16 −0.16 0.015 0.015 0.015 0.016 0.014

η
(2)
P −0.22 −0.23 −0.22 −0.23 −0.23 −0.22 0.020 0.020 0.019 0.018 0.018

η
(3)
P 0.06 0.068 0.061 0.070 0.069 0.065 0.016 0.016 0.017 0.016 0.015

η
(1)
E −0.05 −0.11 −0.09 −0.11 −0.09 −0.09 0.078 0.058 0.091 0.089 0.069

η
(2)
E 0.15 −0.083 0.011 −0.133 −0.098 −0.043 0.097 0.080 0.095 0.087 0.084

η
(3)
E 0.12 0.19 0.13 0.23 0.19 0.15 0.068 0.058 0.078 0.067 0.075

η
(1)
H 0.18 0.18 0.19 0.18 0.18 0.18 0.029 0.023 0.033 0.030 0.024

η
(2)
H 0.35 0.34 0.35 0.34 0.34 0.35 0.016 0.014 0.018 0.017 0.014

η
(3)
H −0.18 −0.18 −0.18 −0.19 −0.18 −0.18 0.027 0.020 0.030 0.026 0.023

NOTES: †Increase the lab-validation proportion in fixed number of prefectures.
‡Increase the number of sampled prefectures but fix the lab-validation proportion.

Figure 1. Simulation study for parameter identifiability: boxplots of the mixing statistic and the posterior mean square error (PMSE) over the 100 epidemics for baseline
transmission rates (γ (v)

E , γ
(v)

H1 , γ
(v)

H2 ) and baseline pathogenicity (cloglog(p(v)
0 )). Presented statistics are averaged over all three pathogens. The boxplots are stratified

by overall lab-validation proportion (2%, 5%, and 10%) and sampling design (white: balanced, light gray: imbalanced design I, dark gray: imbalanced design II). At 2%
lab-validation, the two imbalanced designs I and II are exactly the same design and thus, the boxes are duplicates of each other.
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Figure 2. Simulation study for aggregation of laboratory data: boxplots of the mixing statistic and the posterior mean square error (PMSE) over the 100 epidemics for
baseline transmission rates (γ (v)

E , γ
(v)

H1 , γ
(v)

H2 ) and baseline pathogenicity (cloglog(p(v)
0 )). Presented statistics are averaged over all three pathogens. The boxplots are

stratified by lab-sampling design and aggregation scheme (white: no aggregation, light gray: aggregation by neighborhood, dark gray: aggregation by province). The
overall lab-validation proportion was set to 2%.

under the imbalanced designs when the validation proportion
was low (2–5%), and under imbalanced design II than under
design I; however, PMSE was similar across designs and even
across validation proportions, for the same reason mentioned
above. At the validation proportion of 10%, the balanced design
and imbalanced design II performed similarly in terms of both
mixing and PMSE for the pathogenicity-related parameters.
The differences between validation proportions and sampling
designs in estimating the overall temporal trends, β

(v)
t , are

less obvious than but largely consistent with those seen on the
temporal effects η

(v)
B (Figures S5–S7, supplementary materials).

The temporal trends were captured with reasonable accuracy,
though more so for pathogens 1 and 2 than for pathogen 3. We
also compared the performance between an empirical approach
and the proposed MCMC model for estimating the pathogen-
specific case numbers, Y(vs)

it (online appendix, Section 3 and
Figure S8, supplementary materials).

For all the sampling designs and lab-validation proportions,
the posteriors of 50 randomly selected simulated epidemics are
compared to the priors for key parameters of pathogen v = 1 in
Figures S9–S16 (supplementary materials), where the posterior
density estimates were smoothed with a normal kennel and a
Silverman’s rule-of-thumb bandwidth (Silverman 1986). Gener-
ally, the posteriors are distinct from the priors and the posterior
modes are centered near the true values, suggesting that these
parameters are well identified even with a 2% lab-validation. It is
also clear that the higher the lab-validation proportion, the more
clustered the posterior modes, and the trend is more notable

for the balanced design, for example, for η
(1)
S in Figure S14

(supplementary materials).
We then examined the performance of lab data aggregation

for both balanced and imbalanced designs II, fixing the overall
lab-validation proportion at 2%. Aggregation improved the
mixing of the Markov chains for all parameters, as shown in
Figures 2, S17, and S18 (supplementary materials). Compared
to aggregation by province, aggregation by neighborhood
showed slightly better mixing under the balanced design for
the transmission rates, spatial effects α(v), and temporal effects
η

(v)
B . No qualitative difference in mixing was found between

the two aggregation schemes under the imbalanced sampling
design, except for the slight advantage of aggregation by
neighborhood in sampling α(v). Under the balanced sampling,
aggregation by neighborhood reduced notably the PMSE for
γ

(v)
H1 (Figure 2) and η

(v)
B (Figure S18, supplementary materials),

inflated the PMSE for pathogenicity-related parameters p(v)
0 ’

(Figure 2) and η
(v)
P (Figure S17, supplementary materials),

and provided comparable estimates for other parameters, in
comparison to no aggregation. The performance of aggregation
by neighborhood under the imbalanced sampling design
was similar to that under the balanced design, except that
the PMSE was increased for two more parameters, η

(v)
H

(Figure S17, supplementary materials) and α(v) (Figure S18,
supplementary materials). Aggregation by neighborhood gave
notably smaller PMSE than aggregation by province for
γ

(v)
E , γ

(v)
H1 (Figure 2) and η

(v)
B (Figure S18, supplementary
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Table 2. Posterior means and 95% credible intervals (CI) of pathogen-specific transmission rates and pathogenicity for the hand, foot, and mouth disease epidemic during
2009 in southern five provinces of China.

Parameter EV71 CA16 Other

Mean 95% CI Mean 95% CI Mean 95% CI

γ
(v)

E 0.69 (0.51, 0.91) 0.11 (0.061, 0.18) 0.47 (0.32, 0.70)
γ

(v)
H1 0.81 (0.78, 0.84) 0.58 (0.55, 0.61) 0.90 (0.86, 0.94)

γ
(v)

H2 0.002 (0.0009, 0.003) 0.010 (0.009, 0.012) 0.005 (0.003, 0.007)
1 − p(v)

0 0.58% (0.52%, 0.64%) 0.044% (0.030%, 0.060%) 0.20% (0.17%, 0.24%)

materials) under the balanced sampling design and for α(v)

(Figure S18, supplementary materials) under the imbalanced
design. On the other hand, aggregation by province offered
slightly better PMSE for γ

(v)
H2 (Figure 2) and η

(v)
E (Figure S17,

supplementary materials) under the balanced design.
While aggregation led to notable inflation in the PMSE for

pathogenicity-related parameters (p(v)
0 and η

(v)
P ) regardless of

the sampling design, the actual biases and SDs of the estimates
associated with aggregation were still reasonably small com-
pared to the scale of these parameters (Table S5, supplementary
materials). The only considerable bias was in the estimates for
η

(3)
P , perhaps mainly because of the small scale we assumed for

this parameter. Further examination of pathogen-specific p(v)
0

and η
(v)
P confirmed that parameters associated with pathogen 3,

in particular η
(3)
P , had much larger PMSE compared to the other

two pathogens (Figure S19, supplementary materials).
Finally, we compared the proposed MIS approach to the

existing MBS approach for sampling the unobserved pathogen-
specific patient counts, Y(vs)

it . The lab-validation proportions
across prefecture-weeks exactly followed the 2009 HFMD
data in southern China to best mimic the spatio-temporal
imbalance in reality. The overall lab-validation proportions in
these simulated epidemics were about 1.7–1.8%. No aggregation
was performed. We found no qualitative difference in terms of
PMSE between the two approaches in simulations, but the MIS
approach is associated with notably better mixing statistics for
cloglog(p(v)

0 ), η
(v)
P , and α(v) (Figures S20–S22, supplementary

materials).

5. Case Study

We aim to estimate the transmissibility and effects of climatic
factors of EV71 and CA16 in the southern provinces of China
during 2009. All other minor HFMD-related enteroviruses were
grouped into a single category “Other.” Each patient in the
surveillance database is marked as either “mild” or “severe.”
Consequently, V = 3 and S = 2 in this case study. In view of the
extremely low and spatio-temporally imbalanced lab-validation
proportions in the surveillance data (Figure S1, supplementary
materials), we simplified the proposed model by assuming (1)
the spatial random effects, α(v), were specific to each province
rather than to each prefecture; and (2) the infectious period is
one week. Laboratory data were aggregated by neighborhood
in the data analysis. Convergence problems (different poste-
rior modes across chains with different initial values) would
appear for some parameters if either the model simplifications
or the aggregation were not implemented. The simplified and

aggregated model is also robust to moderate perturbation of the
priors; for example, changing the prior for transmission rates
from Gamma(1.5, 0.5) to Gamma(0.1, 0.1) makes little changes
to the posteriors. As climatic conditions and population density
are relevant to both environmental exposure and human-to-
human contact, all transmission rates were adjusted for tem-
perature, relative humidity, wind speed, and the logarithm of
population density, each as a cubic polynomial. In addition, as
pathogenicity is modeled mainly to account for the different
sampling probabilities between mild and severe cases, we do not
adjust pathogenicity for covariates in this analysis. The MCMC
was implemented with 10 parallel chains.

Estimates for the transmission rates and pathogenicities are
given in Table 2. CA16 was substantially less transmissible from
environment to human and from human to human locally (i.e.,
within prefecture) than EV71 and other enteroviruses. In par-
ticular, the environmental transmissibility of CA16 was much
lower than the other two pathogens. However, CA16 appeared
more transmissible from human to human across neighboring
prefectures, about five times that of EV71 and twice that of
other enteroviruses. The transmission rates across neighboring
prefectures, 0.002–0.01, were almost negligible as compared
to the rates within prefectures, 0.58–0.90. However, the role
of cross-prefecture transmission in the spatial diffusion of the
disease should not be undervalued. Take CA16, for example, the
infection risk imposed by 100 infectious cases in neighboring
prefectures (100 × 0.01) is much higher than the environmental
risk (0.11). As expected, EV71 showed the highest pathogenic-
ity, 0.58% (95% credible interval: 0.52%, 0.64%), triple that of
enteroviruses in the “other” category and over 10 times more
pathogenic than CA16. Mild disease is usually associated with
better mobility and could partially account for the relatively
strong cross-prefecture transmissibility of CA16.

Covariate effects on the environmental exposure level were
distinct between EV71 and CA16 (Figure 3). The environmental
exposure level to EV71 was not much affected by wind
speed or temperature, whereas CA16 preferred less windy
conditions and temperature near 25◦C. EV71 was most active
with relative humidity in the range of 75–85%, whereas, for
CA16, the higher relative humidity the better. Both sparsely
and densely populated areas were associated with elevated
environmental risk of EV71, but the risk of CA16 increased
only in densely populated areas. The distinction in covariate
effects on human-to-human transmission between EV71 and
CA16 was also notable (Figure 4). In the most common range
of wind speed, 1–3 meters per second, EV71 was associated
with lower, while CA16 was associated with higher, risk of
human-to-human transmission as the wind speed increases.
Extremely windy conditions further decreased the risk of
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Figure 3. Covariate effects on baseline environment-to-human transmission rates (γ (v)
E ) for EV71 (solid) and CA16 (dashed). The background histograms in gray represent

distributions of the corresponding covariates. Presented are posterior means (solid or dashed) and 95% credible intervals (dotted) of risk ratios (eη
(v)
E ).

Figure 4. Covariate effects on baseline human-to-human transmission rates (γ (v)
H1 and γ

(v)
H2 ) for EV71 (solid) and CA16 (dashed). The background histograms in gray

represent distributions of the corresponding covariates. Presented are posterior means (solid or dashed) and 95% credible intervals (dotted) of risk ratios (eη
(v)
H ).

CA16. Temperatures above 20◦C were slightly more suitable for
human-to-human transmission of EV71; in contrast, human to
human transmission of CA16 was facilitated by either relatively
cold (near 5◦C) or very hot (near 30◦C) conditions. In the most
common ranges of relative humidity (60–85%) and population

density (102–103 people/km2), there were positive associations
for both pathogens.

Spatial heterogeneity in baseline human-to-human trans-
missibility unexplained by covariates was shown in Figure S23
(supplementary materials) by province-level random effects.
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Fujian Province, the east tip of southern China, had the highest
baseline transmissibility for both EV71 and CA16, followed by
Hunan for EV71 and Guangdong for CA16. The lowest base-
line transmissibility was observed in Guangxi for EV71 and in
Jiangxi for CA16. Posterior means of covariate-adjusted effective
incidence rates, λ(v)

it ’s, were averaged over the year and mapped
in Figure S24 (right; supplementary materials) at the prefecture
level, together with annual averages of posterior means of Y(v+)

it s
(middle) and empirically imputed Y(v+)

it s (left). The empirical
imputation of Y(vs)

it was implemented by multiplying Y(+s)
it with

the observed proportion of pathogen v among all lab-tested
cases of severity category s, with the same aggregation as used
by the model. As expected, the posterior means of λ

(v)
it s and

Y(v+)
it s are very close to each other, and both are similar to the

empirically imputed Y(v+)
it s.

The temporal trends in baseline human-to-human trans-
missibility unexplained by covariates were shown in Figure S25
(supplementary materials) for each type of pathogen, where
a bimodal seasonality was shared by all pathogens. The first
peak occurred near weeks 11–12, corresponding to early March
when the empirically imputed pathogen-specific epidemic
curves grew exponentially. The second peak of human-to-
human transmissibility appeared near week 45, corresponding
to early November, which was actually after the second peak
in the empirical epidemic curves. This gap is likely a result of
synergy of both local variation in the epidemics and covariate
adjustment. Taking CA16 as an example, Fujian province had its
second epidemic peak at week 50, much delayed than week 40 in
Guangdong (Figure S26, supplementary materials). Meanwhile,
the interquartile range of temperatures in early November
(14 − 23◦C) were less suitable for transmission than that
(24.5 − 29◦C) in mid-September (week 37 and 38), according
to Figures 3 and 4. Together, they suggest a late fall peak in
the temporal effect best explains the winter peak of CA16 cases
(Figure S25, supplementary materials). The posterior means
of λ

(v)
it s were averaged over all prefectures and plotted over

time for each province and each pathogen (blue) in Figure S26
(supplementary materials), together with averages of posterior
means of Y(v+)

it s (gray) and empirically imputed Y(v+)
it s (red).

As with the spatial patterns, consistency was observed between
model-based λ

(v)
it s and Y(v+)

it s. Empirically imputed Y(v+)
it s

followed similar patterns with occasional departures from the
smoother model-fitted patterns at some weeks, indicating that
the current model fits the data reasonably well.

6. Discussion

We proposed a Bayesian framework for analyzing surveillance
data of infectious diseases with sparse laboratory validation
set and assessed the identifiability of key parameters related
to transmissibility and pathogenicity. Even under a very low
overall lab-validation proportion of 2%, pathogen-specific
human-to-human transmission rates, probabilities of severe
disease, and associated covariate effects can be accurately
estimated in the simulations. In our application, covariate
effects on environment-to-human transmission risk are the

least identifiable. For most infectious pathogens with both
human-to-human and environment-mediated transmission
routes, the latter is usually relatively low and dominated by the
former during epidemics, leading to the difficulty in estimating
the latter as has been previously recognized by Eisenberg,
Robertson, and Tien (2013) and also shown in our simulation
studies. Explicit measurement of environmental exposure
levels could mitigate this difficulty but is often not feasible
due to detection limit or logistic constraints. In such cases, a
simplified environmental transmission component is modeled
to account for data variation unexplained by human-to-human
transmission rather than to draw reliable inference on risk
factors associated with environment-to-human transmission.

For some parameters, the improvement in estimation does
not seem commensurate with a 5-fold increase in the lab-
validation proportion (from 2% to 10%), in particular for the
imbalanced designs, for example, γ (3)

H2 in Table 1. This is perhaps
related to the complexity of the model and the nature of the
data. The surveillance data entail two layers of competing risks:
(a) competition among pathogens and (b) competition among
three types of infectious sources (environment, cases in local
prefectures, and cases in neighbor prefectures). Layer (a) falls in
the standard multi-cause survival setting with an independent
structure among the latent pathogen-specific times to infection,
but is subject to missingness due to limited lab-testing. The
identifiability of cause-specific hazards and regressor effects
for full data under mild conditions were shown in Heckman
and Honore (1989). Layer (b) differs slightly from the standard
setting in that it is rarely observed which type of source
infects first. The parameters are identifiable largely because
the risk levels vary differently over time between source types.
Identifiability of source-specific parameters has been shown
empirically in similar settings (Longini and Koopman 1982;
Yang et al. 2010; Meyer and Held 2014). The random effects
α(v) in Equation (2) further complicate identifiability of source-
specific parameters when laboratory data are sparse, as seen in
our data analysis where prefecture-level random effects led to
convergence problems. If the interest is to detect a few outlying
prefectures with unusual transmission risk, one could consider
shrinkage approaches used for variable selection, for example, a
spike-and-slab prior for the α

(v)
i ’s (Ishwaran and Rao 2005).

The most computationally challenging component in our
framework is the sampling of Y. The discrete nature of these
variables precludes the use of efficient sampling methods
designed for continuous variables, for example, the Hamiltonian
dynamics (Neal 2010). The high dimension of Y also makes it
difficult to use partition-based algorithms such as the stochastic
approximation Monte Carlo algorithm (Liang, Liu, and Carroll
2007). In addition, the formulation of λ

(v)
it (the mean of Y(v+)

it )
in Equation (5), which is a widely accepted choice in the context
of disease transmission (Meyer and Held 2014; Malesios et al.
2017), makes it difficult to find a link function, that is, linear in
all the regressors. In the absence of a generalized linear mixed
model representation, efficient analytic techniques such as the
integrated nested Laplace approximation are not applicable (Rue
and Martino 2009). On the other hand, the computationally
efficient two-step approach suggested by Fisher et al. (2017),
that is, first estimate Y solely from the case and laboratory
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data and then use the asymptotic or posterior distribution of
the estimated Y for the inference on other parameters, could
be adapted to the transmission setting. We proposed the MIS
approach with a multinomial proposal to sampling {Y(vs)

it : v =
1, . . . , V} simultaneously. The MIS approach is comparable to
the MBS approach in terms of PMSE but gives better mixing
results for some parameters. When applied to the real data,
however, the MBS approach showed less satisfactory mixing
than the MIS approach for γ

(v)
E s (Figure S27, supplementary

materials) and γ
(v)
H2 ’s (Figure S28, supplementary materials),

suggesting the new approach is likely more favorable. The
performance of the MIS approach could be further improved
(online appendix, Section 5, supplementary materials).

In both simulations and the case study, the infectious period
was assumed to be one week. In an additional simulation study,
a one-week infectious period was associated with slightly better
mixing behavior of the MCMC for most parameters and smaller
PMSE for some parameters, compared to a two-week infectious
period (Figures S29–S31, supplementary materials). A possible
reason is that a longer infectious period induces extra depen-
dence among the elements of Y and thereby makes the sampling
more challenging. It should be noted that ρ in Equation (22)
is not identifiable even with 10% sampling probability for lab-
validation and was hence assumed known. It was previously
found that a value of 0.2 for ρ provided a better fit to the HFMD
epidemic data in 2009 than larger values (Wang et al. 2011).
Consequently, ρ = 0.2 was assumed for the results presented
in Figures S29–S31 (supplementary materials). Another caveat
of the case study is that children who might have been clinically
misdiagnosed as HFMD were not excluded. Some clinical cases
sampled for laboratory validation might have been tested nega-
tive. The number of test-negative children were not reported to
CCDC and are thus not available to infer how many non-tested
cases were actually misdiagnosed. Finally, our model does not
address underreporting of cases. For instance, some mild cases
might not seek medical assistance at surveillance-covered hospi-
tals, leading to possible underestimation of p(v)

0 . However, other
unknown but systematic underreporting mechanisms might
also exist, and how they affect the inference is generally unpre-
dictable. Extension of our model to adjust for misdiagnosis and
underreporting is open to future investigation.

Based on the simulation results, we recommend the balanced
design for virological surveillance of infectious diseases when-
ever feasible. If a balanced design is not achievable, it is better to
sample more locations for lab-validation rather than to sample
more cases from limited locations. To analyze surveillance data
with sparse laboratory validation, aggregation could improve
inference on pathogen-specific human-to-human transmission
rates and their temporal trend, but may compromise the infer-
ence on other parameters especially when the laboratory valida-
tion is imbalanced. Inferential gain or loss is not always mono-
tonic in the level of aggregation. More importantly, our study
builds a foundation for studying immunological interactions
among antigenically related pathogens at the population level
for a wide spectrum of infectious diseases such as influenza and
dengue, which will inform future field and modeling studies
on forecasting of epidemics and optimization of control and
prevention strategies.
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Supplementary technical details, tables, and figures are available with this
article at the ASA website. (UASA_A_1585250_SM7367.zip)
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