Real-time analysis of infectious disease outbreaks using TranStat

Jonathan D. Sugimoto, PhD (jons@fredhutch.org)

Lecture Website:

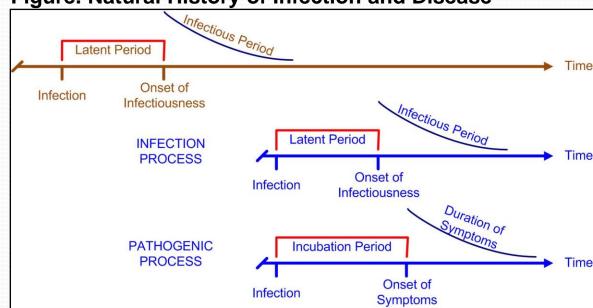
http://www.cidid.org/transtat/

Lecture 6 Outline

- Overview of TranStat
- Basic description of the statistical model implement by TranStat
- Case Studies
 - Case study 1: Illustrative example
 - Case study 2: Dependent cluster data
 - Case study 3: Independent cluster data
 - Case study 4: Accounting for missing outcome information
 - Case study 5: Multiple types of clusters
- Summary

Motivation

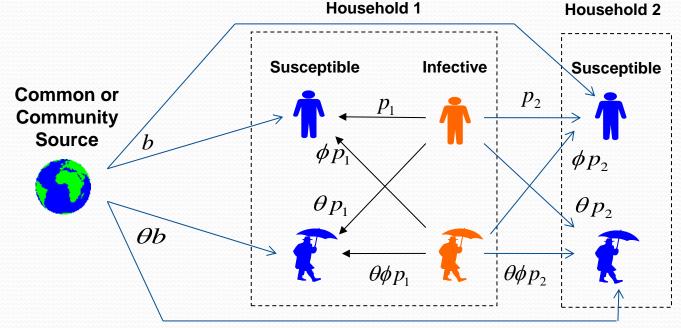
To enable field personnel and researchers to analyze data from local outbreaks of infectious diseases, with the aim of...


- Detecting individual-to-individual (person-to-person) transmission of pathogens
- Evaluating the transmissibility of pathogens
- Evaluating the effects of risk factors and interventions on transmission
- Performing simulation studies, for example, to perform power calculations for study design purposes

Basic Concepts: Natural History of Infection and Disease

Figure. Natural History of Infection and Disease

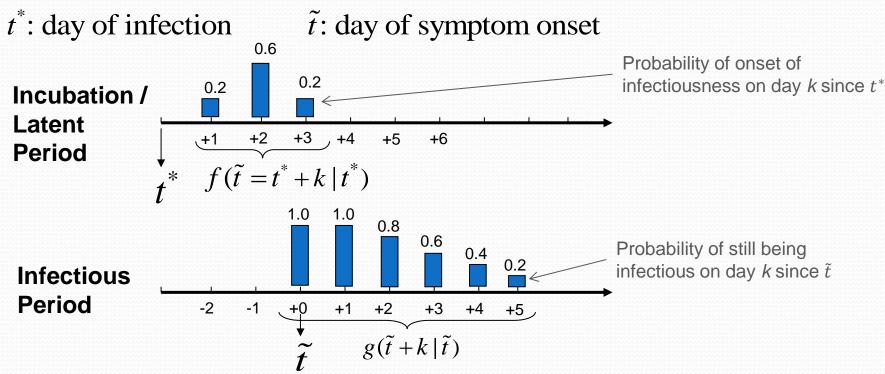
Infectious Individual


Susceptible Individual

- Infection depends upon exposure to an infectious individual (see next slide for more details)
- Both concurrently occurring processes are often (or are assumed to be) strongly correlated, for example, onset of symptoms may be assumed to indicate onset of infectiousness
- Individuals do not necessarily complete each process in its entirety, e.g., an individual may become
 infectious, but never exhibit clinically-apparent symptoms (infectious asymptomatic infection)

Basic Concepts: Exposure

Figure.
Population and
Contact
Structure



- Contact = exposure to a specific source of infection for a defined period of time (typically, a day)
- 'Household' = general term for clusters of individuals who are more likely to mix with each other than with other members of the population. Multiple types of households may be defined.
- Types of contact and associated transmission probabilities
 - P2P, or person-to-person, exposure to a specific individual: within household, p_1 , and between household (for example, household in the same neighborhood), p_2
 - C2P, or community-to-person exposure to non-specific sources of infection: b
- θ and ϕ denote covariate effects (risk-factors or interventions) on susceptibility and infectiousness, respectively.

Model: Data Inputs

- Individual-level information
 - Household (cluster) membership
 - Covariates: e.g., age or vaccination status
 - Outcome-related information: infection and symptomatic status, onset times, and laboratory test results.
 - Information about any pre-existing immunity to infection
 - Indication of whether or not data is missing for each of the outcome and pre-existing immunity related data inputs
- Household or Cluster level information
 - Population and/or contact structure
 - Beginning and end of observation period for each cluster

Model: Incubation/Latent and Infectious Period Distributions (assumed known)

- These are sample distributions for the incubation/latent and infectious periods.
- This example assumes that onset of symptoms indicates onset of infectiousness, *i.e.*, incubation=latent period.
- TranStat inputs: Minimum and maximum values for k and the daily probability distribution (blue bars)

Likelihood

- $T = \begin{cases} \text{onset of infection,} & \text{infected} \\ \text{end of follow } \text{up,} & \text{otherwise} \end{cases}$
- Probability that j infects i during day t: $logit(p_{ijt}) = logit(p) + X_i\beta_S + X_j\beta_I + X_{ij}'\beta_{SI}, j \in \mathcal{H}_i$
- An important example of interaction:
 - Let r_i be the vaccination status and the only covariate for person i
 - $logit(p_{ijt}) = logit(p) + r_i\theta + r_j\phi + r_ir_j\psi$
 - $VE_S = 1 \theta$, $VE_I = 1 \phi$, $VE_T = 1 \psi$

Likelihood (continued)

Probability that the common/community source infects i on day t.

$$logit(b_{it}) = logit(b) + X_i\alpha_S$$

Probability of i escaping infection on day t.

$$e_{it} = (1 - b_{it}) \prod_{j=1}^{N} (1 - p_{ijt}g(t|\tilde{t}_j))$$

Probability of escaping infection up to day t.

$$Q_{it} = \prod_{\tau=1}^{t} e_{i\tau}$$

Likelihood contribution by i:

$$L_{i} = \begin{cases} Q_{iT}, & \text{infected} \\ \sum_{t} f(\tilde{t}_{i}|t)Q_{i(t-1)}(1 - e_{it}), & \text{otherwise} \end{cases}$$

Some Statistical Adjustments

- Selection bias: a household is observed only upon ascertainment of an index case
 - Probability of no symptom onset on day \tilde{t}_{idx} :

$$L_i^m = \begin{cases} L_i, & i \text{ is index} \\ Q_{i\tilde{t}_{idx}} + \sum_{t < \tilde{t}_{idx}} \Pr(\tilde{t}_i > \tilde{t}_{idx} | t) Q_{i(t-1)} (1 - e_{it}), & \text{not index} \end{cases}$$

- Maximize the conditional likelihood, $\prod_i L_i/L_i^m$
- Right censoring: showing no symptoms by day T does not necessarily mean that i escaped infection.

$$L_i = Q_{iT} + \sum_{t < T} \Pr(\tilde{t}_i > T | t) Q_{i(t-1)} (1 - e_{it}),$$
 not index

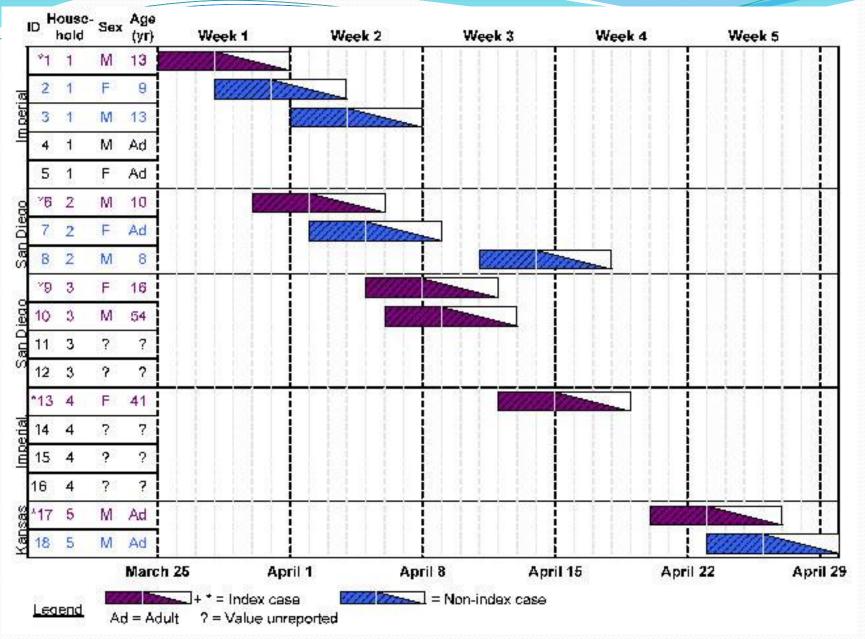
Other Statistical Features

- Goodness of fit: comparing observed with expected frequency of symptom onset per person-day
- Permutation test to detect person-to-person transmission (Yang et al. Annals of Applied Stat, 2006)
 - $H_0: p = 0 \ vs. H_1: p \neq 0$
 - Test statistic: $\lambda = -2log \frac{sup_{b}L_{o}(b|t)}{sup_{b,p}L(b,p|t)}$
 - Under H_0 , permute the symptom onset dates.

Note about previous Version 1

- Can fit simple models with b, p₁, and p₂, but no covariates
- GUI available
- Data input and basic editing functions available
- Sample datasets provided
- No longer under development, so bugs are still present

TranStat Version 3


- Any number of b's and p's
- Covariate adjustment
- Flexible contact structure
- Accounts for unobserved pre-existing immunity and/or asymptomatic infection
- Accounts for missing data related to infection or symptomatic status, and missing onset times.
- Permutation test available to evaluate H_0 : p=0
- Command line interface

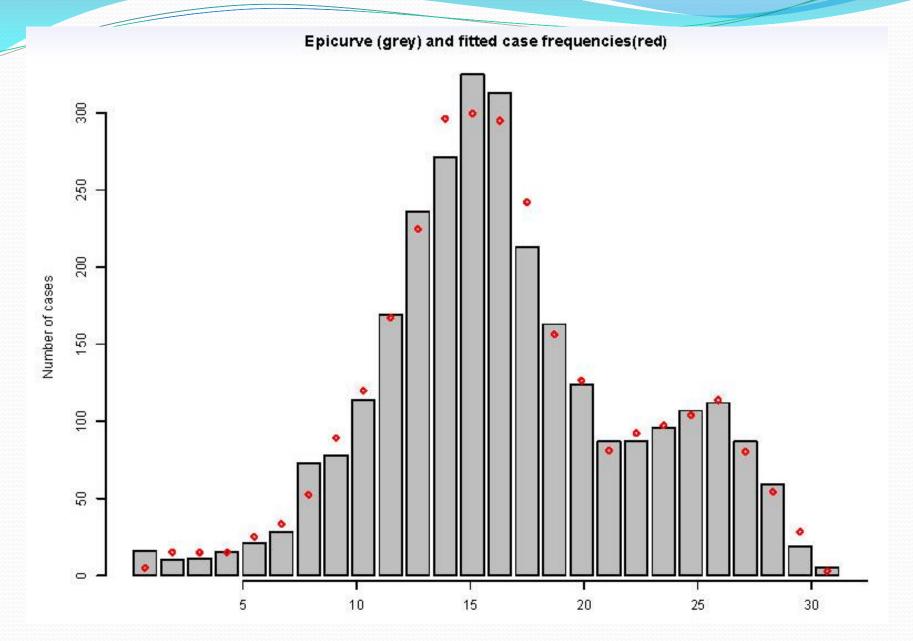
Case Studies 1 and 2

Novel Influenza Strains

Case Study 1: US household outbreaks of Influenza A(H1N1) 2009

- Household structure is known => can model withinhousehold transmission.
- Households not in the same neighborhood => can not model inter-household transmission.
- Households can be regarded as independent minicommunities.
- People in the same households share the same history of contact and exposure.

Case Study 1: Influenza A(H1N1) 2009 outbreak in Mexico

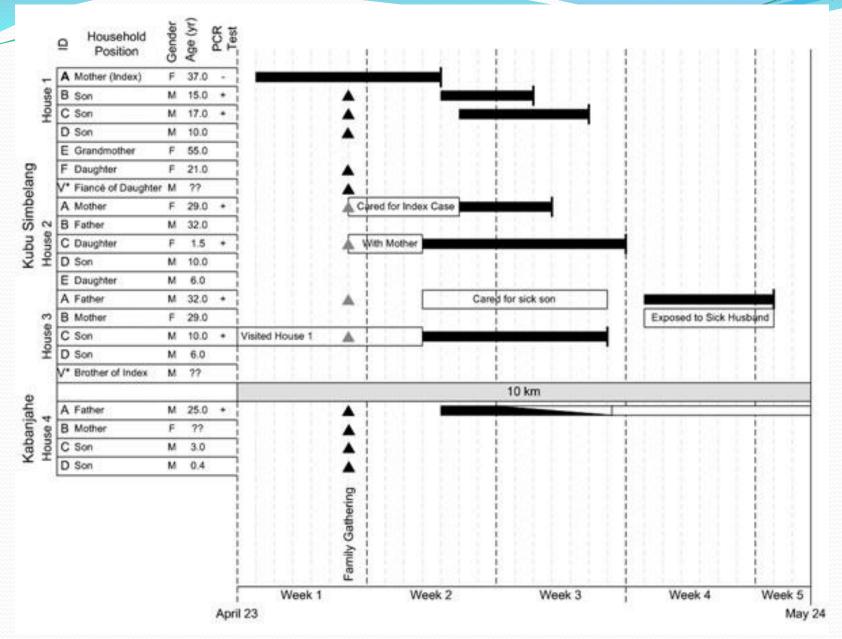

- People: 2,895 confirmed cases
- Time: March 11—? We use the data up to May 15.
- Case numbers are aggregated by day.
- Contact structure is unknown.
- R₀ is estimable:
 - Distribution of serial interval based on all possible transmission networks
 - Chain binomial model

Case Study 1 (continued)

- For a large population, the chain binomial model converges to the Poisson distribution
- On day t, observe number of susceptibles S(t), infectives I(t), and new infections X(t).

$$\frac{\binom{S(t)}{X(t)}}{\binom{I}{X(t)}} \left\{ 1 - (1-p)^{I(t)} \right\}^{X(t)} (1-p)^{I(t)S(t+1)}
\rightarrow \frac{(\lambda I(t))^{X(t)}}{X(t)!} \exp\{-\lambda I(t)\}$$

- $\hat{\lambda} = \frac{\sum_{t=1}^{T} X(t)}{\sum_{t=1}^{T} I(t)} \rightarrow \lambda$ a.s., and $\hat{R}_0 = D\hat{\lambda} \rightarrow R_0$ a.s.
- To use TranStat, create D-1 uninfected people for each observed case. D = 100 is sufficiently large.



Case Study 1: Analysis Results

- Fixed community-to-person probability at an expected value based upon external data sources
- Household Secondary Attack Rate:
 - 20.5% (95% CI: 7.1%, 46.4%)
- Similar analysis using these data (Yang et al. 2009):
 - School local R = 2.4 (95% CI: 1.8, 3.2)
 - R₀: ranged from 1.3 to 1.7

Case Study 2: Indonesian household outbreaks of avian influenza A(H5N1)

- An outbreak caused by a family gathering of multiple households.
- Transmission occurred both within and between households.
- In TranStat, clusters that have cross-transmission should be considered as a single community.
- Individual level contact and risk history.

Analysis Results

- Fixed community-to-person probability at an expected value based upon external data sources
- Household Secondary Attack Rate:
 - 20.6% (95% CI: 6.4%, 49.6%)
- Community-to-person Probability of Infection:
 - 17.1% (95% CI: 3.0%, 67.6%)
- Local Reproductive Number:
 - 0.82 (95% CI: 0.26, 2.64)

Input File Formats

Input Files for TranStat 3

DO NOT INCLUDE COLUMN TITLES IN ANY TRANSTAT INPUT FILE!

Household / Cluster profile: "community.dat"

Household / Cluster ID	Start Observation	End Observation
	1 1	45
ŀ	H 34	56

Population profile: "pop.dat"

P II		Cluster ID	Pre- existing Immune Status	Infection Status	•		Index Case Indicator	Disease Outcome	Disease Outcome Time	Pathogenicity	_	Ignore Indicator
	1	1	() 1	1	34	1	1	39	0	0	0
	N	C	1	0	0	-1	0	0	-1	0	0	0

- Time independent covariates: "time_ind_covariate.dat"
 - One line per individual
 - One column per covariate
 - No missing information

Person ID	Age	Vaccination Status	Gender
1	34	0	0
N	103	1	1

- Time dependent covariates: "time_dep_covariates.dat"
 - One line per individual per time period (a set of one or more contiguous time units)
 - One column per covariate
 - No missing information

Person	Start Time	End Time	Antiviral
ID	(day)	(day)	Prophylaxis
1	1	3	0
N	45	56	1

- C2P contact file: "c2p_contact.dat"
 - C2P contacts can be indexed in three manners
 - no ID, which assumes the same contact history for all individuals

Start Time (day)	End Time (day)	Type of C2P Contact	Weight	Ignore C2P Contact Indicator
1	66	0	0	0
28	28	1	0.85	1

- by cluster ID, which assumes the same contact history for all members of a cluster
- by person ID, which specifies a separate contact history for each individual

Cluster or Person ID	Start Time (day)	End Time (day)	Type of C2P Contact		Ignore C2P Contact Indicator
1	1	66	0	0	0
C or N	28	28	1	0.85	1

 Contact types are numbered using consecutive non-negative integers, beginning with 0

- P2P contact file: "p2p_contact.dat"
 - P2P contacts can be indexed in three manners
 - by cluster ID, which assumes the same contact history between all members of a cluster (requires indexing c2p_contact.dat by cluster ID)

Cluster ID	Start Time (day)	End Time (day)	Type of P2P Contact		Ignore P2P Contact Indicator
1	1	66	0	0	0
С	28	28	1	0.85	1

by person ID, which specifies a separate contact history between each individual

Start Time (day)	End Time (day)		Person ID: Susceptible	7 1		Ignore P2P Contact Indicator
1	66	1	4	0	0	0
28	28	N	66	1	0.85	1

 Contact types are numbered using consecutive non-negative integers, beginning with 0

- Imputation control file: "impute.dat"
 - Include one row per individual for whom at least one outcome or pre-existing immunity related value is missing

Person ID	Possible Pre-Existing Immunity	Possible Escape	Possible Symptomatic Infection	for Imputing Symptomatic	Stop Time for Imputing Symptomatic Infection Onset Time		•	Stop Time for Imputing Asymptomatic Infection Onset Time
1	1	1	0	-1	-1	0	-1	-1
N	0	0	1	1	10	1	1	10

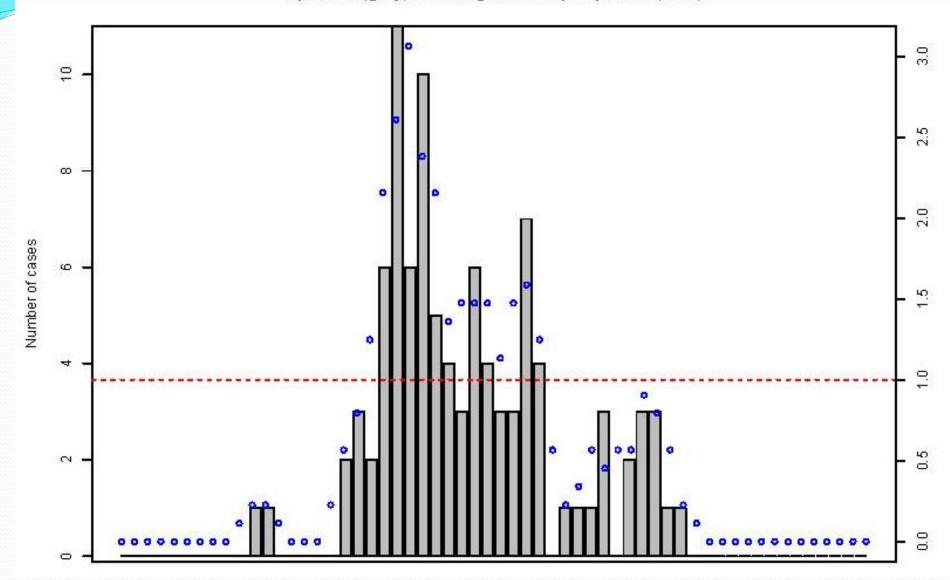
Configuration File

- Natural history of disease, i.e., incubation and infectious periods.
- Profile of parameters to be estimated
 - Numbers of C2P and P2P contact types
 - Numbers of time-independent and time-dependent covariates
- Covariates effects on...
 - Susceptibility due to exposure through...
 - C2P contact
 - P2P contact
 - Infectiousness
 - Interaction between C2P and P2P transmission
- Define equivalence classes of parameters
- Specify which parameters have fix values

Configuration File (continued)

- How should TranStat handle C2P and P2P contact files.
 - Community members share contact history?
 - Community members share risk history (same covariates)?
 - Auto-generate the C2P/P2P contact files?
- Choose whether or not to adjust for selection bias and/or right censoring
- Choose whether or not to calculate/perform goodness-of-fit, case fatality ratio (deprecated), hypothesis test (under development), etc.
- Controlling optimization routine
- Controlling output
- Controlling data augmentation/multiple imputation procedures for missing data for variables related to outcome or preexisting immunity

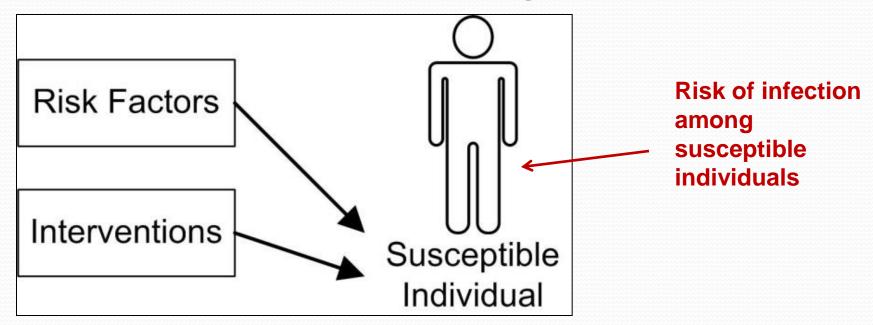
TranStat Output


- Estimates file: "estimates.txt"
 - Outputs estimates, standard errors, and 95% confidence intervals for b's, p's, covariate effects, CPI, SAR's, R₀ (or local R), variance-covariance matrix
 - $CPI_x = 1-(1-b_x)^D$, where *D* is the average duration of exposure to the common source
 - $SAR_{x} = 1 \sum_{t=0}^{Z} (1 g(t|\tilde{t}_{j})p_{x})$, where Z denotes maximum length of the infectious period and $g(t|\tilde{t}_{j})$ specifies the probability that infected individual j is infectious on day t given onset of symptoms on day \tilde{t}_{j} .
- Error file: "error.txt" list of any errors encountered during the estimation process

Case Study 3

Case study 3: Influenza A(H1N1) 2009 household outbreaks in Los Angeles

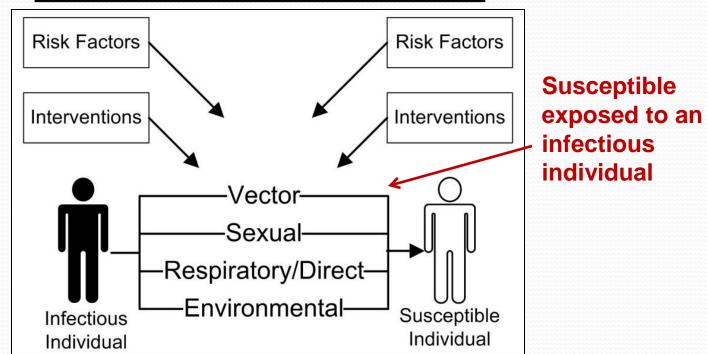
- A total of 58 households with > 1 cases, non-random sample.
- 60 index cases and 37 secondary cases.
- All index cases were laboratory confirmed with either pandemic H1N1 or seasonal influenza A.
- Outbreaks started from April 22 to May 19, 2009.
- Ages are known for all, and seasonal flu vaccine and antiviral treatment are known for part of the surveyed population.
- Missing information:
 - asymptomatic infection
 - pre-existing immunity: Assumed to be non-existent in this population, because this strain of influenza A was first described in humans during the spring of 2009.
- EM-MCEM (Yang et al., Biometrics 2012)


Epicurve (grey) and weights for c2p exposure (blue)

Pause to Demonstrate Case 3

Case Study 4: Household Transmission of *Vibrio cholerae*O1/O139 in Bangladesh

Models for Infectious Disease Risk Standard Epidemiologic Model

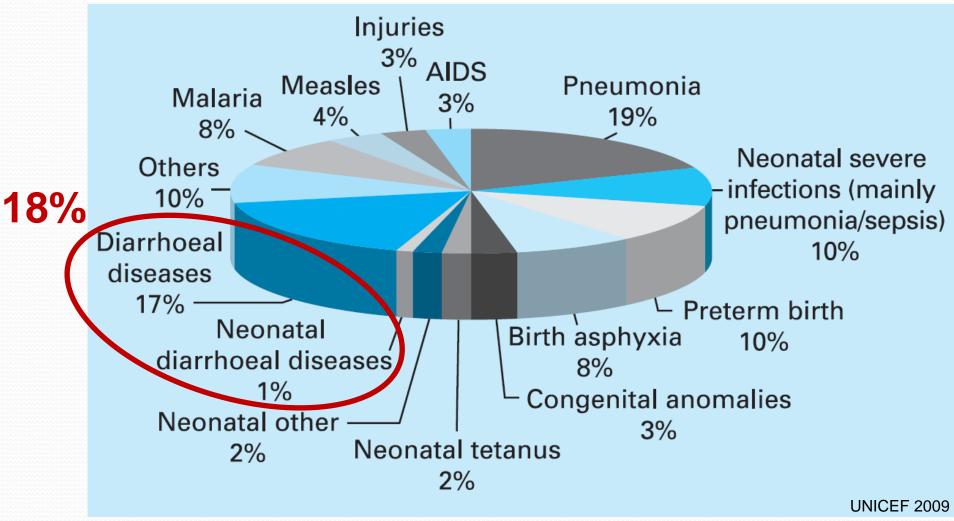

- Assumes equal levels of exposure to infection within covariate strata
- Assumption is often invalid for infectious diseases

Models for Infectious Disease Risk

General Transmission Model

Risk factors and Interventions:

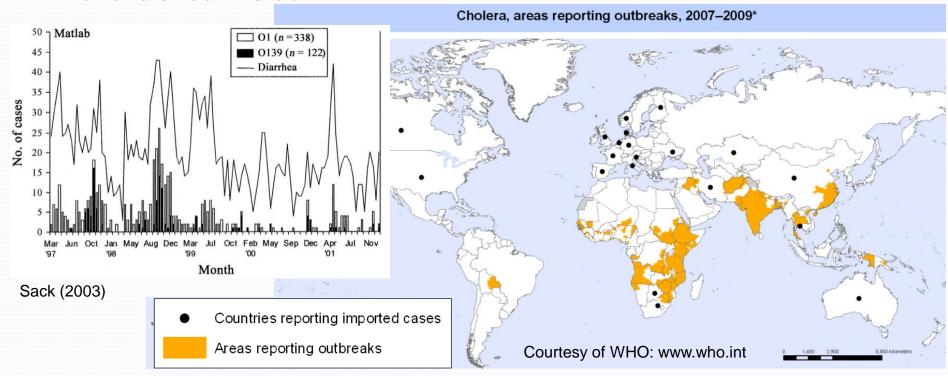
- Modify risk of transmission
- Differentiate effects on infectivity vs. susceptibility


- Accounts for variation in the level of exposure to infection
- CHALLENGE: Measuring the level of exposure to infection among susceptible individuals

My Research Focuses...

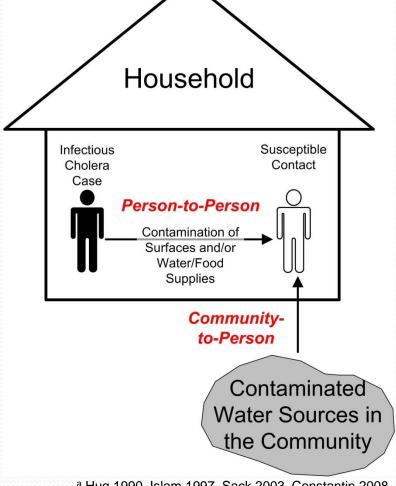
 Design, implement, and analyze epidemiologic studies of infectious diseases transmission

- 2. Develop novel statistical methods and designs for transmission studies
- 3. Apply to infections of global health import


Proximate Causes of Death Among

Human Cholera

- Vibrio cholerae, primarily serogroups O1/O139
- Multiple bio- and sero- types of O1
- "Rice water" diarrhea +/- vomiting
- Vibrio is shed in stool


- 3-5 x 10⁶ cases (WHO 2010)
- 100-130 x 10³ deaths (WHO 2010)
- Seasonal outbreaks in endemic settings

Conceptual Model of Transmission

Community-to-Person exposure

- Substantial evidence a
- Optimal interventions:
 - Clean drinking water technologies
 - Targeted pre-epidemic vaccination of high risk groups b
- Person-to-Person exposure
 - Indirect evidence c
 - Optimal interventions:
 - Promotion of better personal hygiene practices
 - Pre-epidemic vaccination of entire households
- Ongoing debate: Relative contribution of person-to-person exposure to endemic transmission d

^a Huq 1990, Islam 1997, Sack 2003, Constantin 2008

^b Chao 2011

^c Clemens 1990, Mosley 1965, Kendall 2010, others

d Sack 2004, Pollitzer 1959

Goal

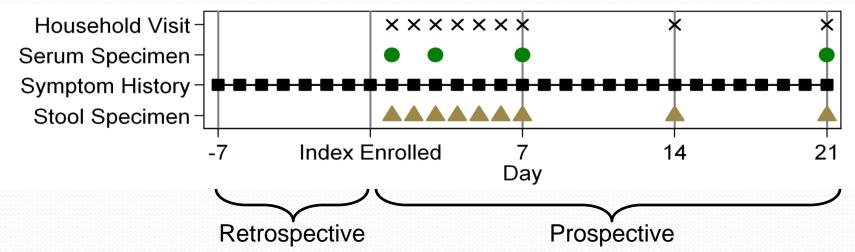
Characterize the role of person-to-person exposure in the endemic transmission *V. cholerae*, by serogroup-serotype

=> inform the selection of cholera prevention/control strategies

Scientific Objectives

- Test for the presence of person-to-person transmission within households
- Estimate the transmissibility of cholera through...
 - person-to-person exposure within households
 - community-to-person exposure
- Estimate the effects of potential risk factors on transmission
 - Age, Sex, and ABO blood group
- Describe aspects of the natural history of endemic cholera

Study Design


- Design: Prospective follow-up of the households of hospital-ascertained cholera cases a,b
- **Time**: 01/2002 to 05/2006
- Place: 364 households in urban Dhaka, Bangladesh
 - Index cases are hospital-ascertained
 - Acute watery diarrhea (≥3 watery stools per day)
 - Stool culture positive for V. cholerae infection
 - Members of the household enrolled after receipt of informed consent
- Person:
 - 364 index case
 - 1050 household contacts

^a Harris 2005, Weil 2009, Kendall 2010

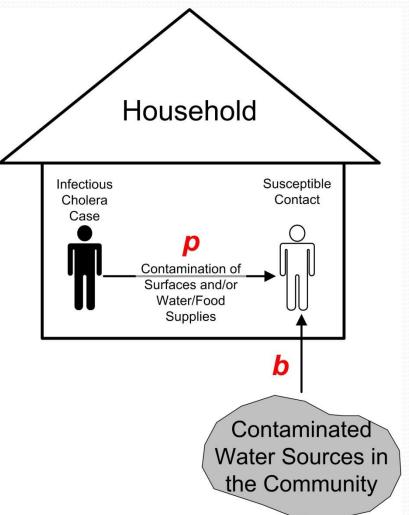
b Example of case-ascertained study design (Yang 2006)

Data

Data collected for EACH member of an enrolled household

Laboratory Tests Performed

- Blood specimens: vibriocidal antibody titers
- Stool specimens: cultured for V. cholerae O1/O139, with serogroup-serotype determined
 - O1 El Tor Ogawa
 - O1 El Tor Inaba
 - O139


Outcome = cholera infection

- Infection = positive stool culture or ≥4-fold rise in vibriocidal antibody titer
- Infectious = ≥ 1 positive stool culture
- Onset of infectiousness = first stool specimen culturepositive for *V. cholerae*

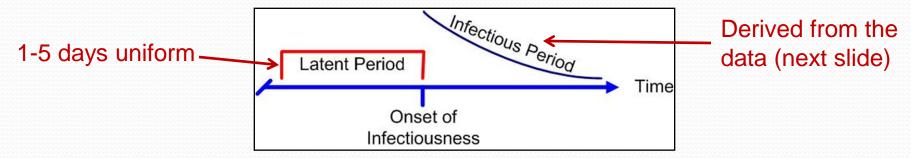
Transmission Model - 1

Parameters

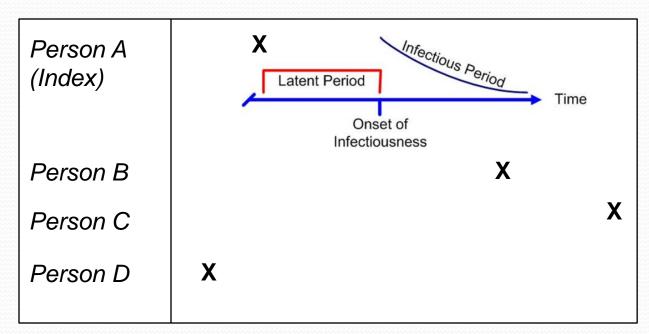
- b = infection probability per daily community-to-person exposure
- p = transmission probability per daily person-to-person exposure

Transmission Model - 2

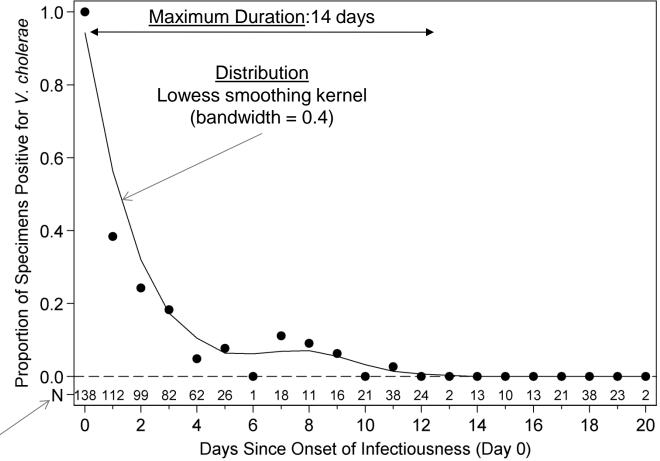
- Extension of the chain-binomial model a
 - Accounts for ascertainment bias in the enrollment process
 - Risk factors affect susceptibility to cholera infection
 - Missing onset and serotype information: ML EM algorithm ^b
 - Likelihood ratio test ^c of the null hypothesis of no person-to-person transmission within households: H₀: p=0


^a Yang 2006

^b Yang et al. *Biometrics* in press


c Yang et al. 2007

Transmission Model - 3


Information in the data: Relative timing of the onset dates within a household

Example:
Simplified
Transmission
Scenario within a
Household

Empirical Infectious Period Distribution, g(t)

N = Number of Specimens Cultured

Epidemiologic Summary Measures

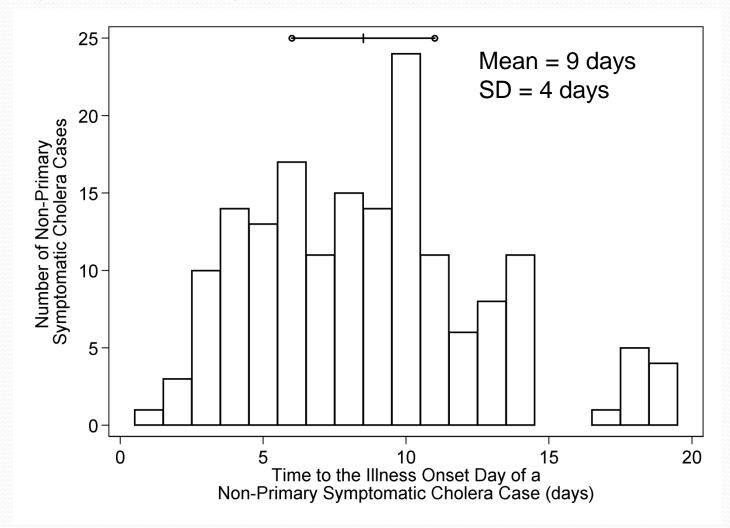
- SAR = household secondary attack rate
 - probability (%) that during his/her infectious period an infected individual will infect a household contact through within-household person-to-person exposure

$$SAR = 1 - \prod_{t=0}^{L-1} (1 - g(t)p)$$

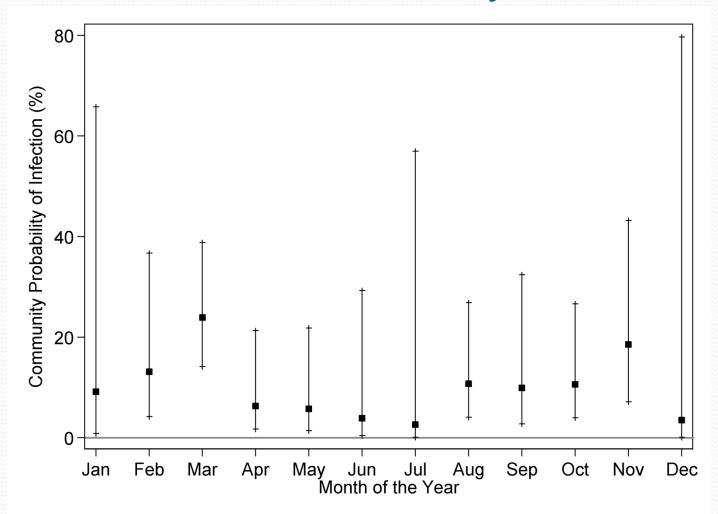
g(t) is the probability that a case remains infective on day *t* of an infectious period with a maximum length of *L*

- CPI = community probability of infection
 - probability (%) that a household contact will be infected through exposure to a community-based source of infection during a 14-day period $CPI = 1 (1 b)^{14}$

Descriptive Statistics


Covariate	All Members	Index Cholera	Household Contacts	
		Infections	Non-Index	Non-
			Cholera Infections	Infections
Number of individuals : (% of All Members)	1414	364 (26%)	318(23%)	732(51%)
Age (years):				
Mean (SD)	22(15)	24(14)	19(15)	23(15)
Median	20	23	15	20
Male sex: % (SE)	49%(1.3%)	44%(2.6%)	51% (2.8%)	51% (1.8%)
Rice water diarrhea: %	54%	100%	57%	29%
≥1 Culture-positive stool specimen: %	42%	100%	70%	0%
O1 Ogawa : O1 Inaba : O139 : Unknown: %		34:49:17:0	22 : 30 : 18 : 30	

- 43% of non-index cholera infections were asymptomatic (no rice water diarrhea)
- 70% of non-index cholera infections had a positive stool culture (i.e., infectious)

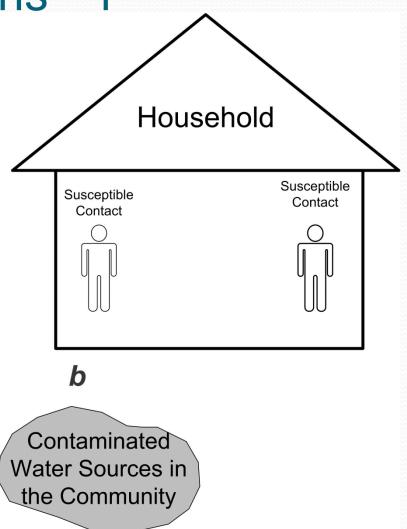

Results

	Serogroup-Serotype			
Parameter	O1 Ogawa	O1 Inaba	O139	
Transmission				
SAR	6.93% (5.03%-9.47%)	7.80% (5.87%-10.31%)	12.60% (8.98%-17.41%)	
CPI	0.15% (0.04%-0.60%)	0.44% (0.18%-1.03%)	0.42% (0.20%-0.91%)	
Risk Factor (univariate) – odds rati	os			
Age: 0-4 vs. >/= 18 years	2.3 (1.0-5.4)	1.4 (0.7-3.0)	1.4 (0.5-3.7)	
Age: 5-17 vs. >/= 18 years	0.9 (0.4-2.0)	1.3 (0.7-2.3)	0.7 (0.4-1.5)	
Sex: Male vs. Female	1.5 (0.8-2.8)	0.8 (0.5-1.4)	1.1 (0.6-2.0)	
ABO blood group: O vs. non-O	0.5 (0.2-1.2)	0.7 (0.4-1.3)	2.2 (1.2-4.3)	

Natural History: Observed Serial Interval Distribution

Natural History:

Summary


- Significant person-to-person transmission of Vibrio cholerae occurred in households (p<0.0001 for each serogroup-serotype)
- First direct estimates of the transmissibility of V. cholerae through person-to-person exposure in households
- Pre-school aged children are the most susceptible to cholera infection
- O blood group appears to significantly elevate susceptibility to O139 infection
- Our results replicate the previously-reported seasonality of transmission in Bangladesh

Limitations

- Time-constant community-to-person infection probability,
 b, for the study period
 - Community-to-person exposure may take other forms, for example, a point-source in time and space
- Spatial confounding of estimates of b
 - Households that cluster in time and space are likely to be similar with respect to b
 - Estimating a single b for all households likely introduces some confounding to the estimates of both this parameter and p

Conclusions - 1

- Our high estimates for the SAR relative to the CPI suggests the following transmission scenario for endemic settings
 - A low-level and persistent risk of the cholera infection being introduced into the household via community-toperson exposure
 - Once introduced into the household, then spread of the infection is comparative explosive between household members through personto-person exposure

Conclusions - 2

- Control interventions should place more emphasis on interrupting person-to-person transmission of cholera within households
 - For example, promotion of better personal or sanitary hygiene

© Gary Larson, The Far Side

Acknowledgements

Collaborators

- Center for Statistics and Quantitative Infectious Diseases, Hutchinson Research Center (Seattle, WA)
- · Amanda L. Allen
- · Eben E. Kenah
- M. Elizabeth Halloran
- Ira M. Longini, Jr.
- International Centre for Diarrhoeal
 Disease Research in Dhaka, Bangladesh
- Fahima Chowdhury
- Ashraful I. Khan
- Firdausi Qadri
- Massachusetts General Hospital and Harvard Medical School (Boston, MA)
- Regina C. LaRocque
- Edward T. Ryan
- Stephen B. Calderwood
- Jason B. Harris

Funding Sources

- · NIH grants:
 - Models of Infectious Disease Agent Study (U01-GM070749).
 - NIGMS: F32-GM085945
 - U01-AI058935
 - U01-AI077883
 - K01-TW07409
 - K01-TW07144
 - R03-A1063079
 - Fogarty/Ellison Fellowship in Global Health (D43-TW005572)
- International Centre for Diarrhoeal Disease Research, Bangladesh
- Charles H. Hood Foundation Child Health Research Award
- Swedish SIDA (HN01AV)
- Physician-Scientist Early Career Award from the Howard Hughes Medical Institute

Bibliographic References

- Chao DL, Halloran ME, Longini IM, Jr. Vaccination strategies for epidemic cholera in Haiti with implications for the developing world. *Proc Natl Acad Sci U S A* 2011;**108**(17):7081-5.
- Clemens JD, Sack DA, Chakraborty J, Field trial of oral cholera vaccines in Bangladesh: evaluation of anti-bacterial and anti-toxic breast-milk immunity in response to ingestion of the vaccines. *Vaccine* 1990;**8**(5):469-72.
- Constantin de Magny G, Murtugudde R, Sapiano MR, Environmental signatures associated with cholera epidemics. *Proc Natl Acad Sci U S A* 2008;**105**(46):17676-81.
- Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Boca Raton, Florida: Chapman & Hall/CRC 1993.
- Harris JB, Khan AI, LaRocque RC, Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect Immun 2005;73(11):7422-7.
- Huq A, Colwell RR, Rahman R, Detection of *Vibrio cholerae* O1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods. *Appl Environ Microbiol* 1990;**56**(8):2370-3.
- Islam M, Drasar B, Albert M, Sack R, Huq A, Colwell R. Toxigenic Vibrio cholerae in the environment: a minireview. Trop. Dis. Bull. 1997;94:R1-R11.
- Kendall EA, Chowdhury F, Begum Y, Relatedness of *Vibrio cholerae* O1/O139 isolates from patients and their household contacts, determined by multilocus variable-number tandem-repeat analysis. *J Bacteriol* 2010;**192**(17):4367-76.
- Lindenbaum J, Greenough WB, Islam MR. Antibiotic therapy of cholera. Bull World Health Organ 1967;36(6):871-83.
- Mosley WH, Alvero MG, Joseph PR, Studies of cholera El Tor in the Philippines. 4. Transmission of infection among neighbourhood and community contacts of cholera patients. *Bull World Health Organ* 1965;**33**(5):651-60.
- Pollitzer R, Swaroop S, Burrows W. Cholera. Monogr Ser World Health Organ 1959;58(43):1001-19.
- Sack RB, Siddique AK, Longini IM, Jr., A 4-year study of the epidemiology of Vibrio cholerae in four rural areas of Bangladesh. J Infect Dis 2003;187(1):96-101.
- Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet 2004;363(9404):223-33.
- Tamayo JF, Mosley WH, Alvero MG, Studies of cholera El Tor in the Philippines. 3. Transmission of infection among household contacts of cholera patients. *Bull World Health Organ* 1965;**33**(5):645-9.
- Weil AA, Khan AI, Chowdhury F, Clinical outcomes in household contacts of patients with cholera in Bangladesh. Clin Infect Dis 2009;49(10):1473-9.
- WHO. Cholera vaccines: WHO position paper. Wkly Epidemiol Rec 2010;85(13):117-28.
- UNICEF. State of the World's Children, 2008. United Nations Children's Fund. New York, New York.
- Yang Y, Ira M. Longini J, Halloran ME. Design and evaluation of prophylactic interventions using infectious disease incidence data from close contact groups. Applied Statistics 2006;55:317-30.
- Yang Y, Longini IM, Halloran ME. A resampling-based test to detect person-to-person transmission of infectious disease. Ann Appl Stat 2007;1(1):211-228.

Pause to Demonstrate Case 4

Case Study 5: Western Washington State Youth Camp and Associated Households

Determinants of the Transmissibility of Pandemic Influenza A (H1N1) 2009 in Community Settings

Study Objectives

- Transmission of symptomatic pH1N1 in a "schoollike" camp and associated households
- Estimate a ...
 - Daytime Camp Local R
 - Nighttime Cabin SAR
 - Households SAR
 - Odds ratio: Effect of age on susceptibility to symptomatic pH1N1

Study Setting and Context

Person:

- Camp population: 96 participants (66% of attendees)
 - 72 6th-grade students
 - 24 teachers and camp staff
- Household members (primary case definition)
 - 42 camp participants (index cases)
 - 136 household contacts

Place: Western Washington State

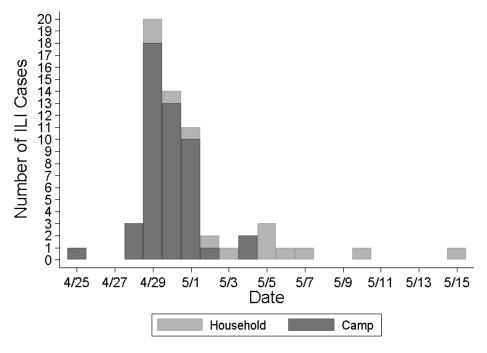
- youth camp
- 41 households of ill camp participants

Time: Spring 2009

- Camp: April 25 May 7 (closed April 30)
- Households: April 30 May 12

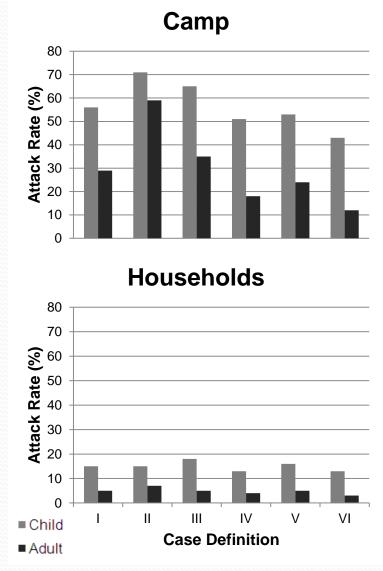
Methods Data Collection

- Study design: Retrospective cohort study
- Data collection: May 18 June 9, 2009
 - Public Health Seattle & King County AND Centers for Disease Control and Prevention (CDC)
 - Retrospective interviews: multiple modes
 - Data:
 - symptom histories, onset dates, attendance, demographic
 - Camp participants and households of ill participants
- Determined to be public health response by the relevant IRBs


Methods Definitions

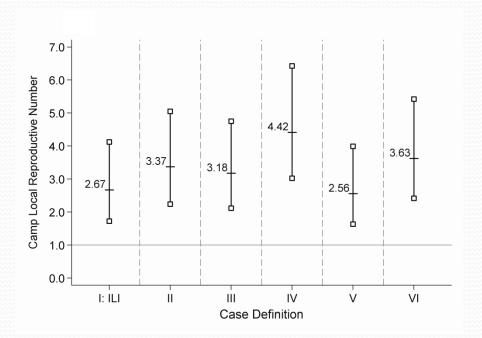
- Outcome: Symptomatic pH1N1
 - 6 case definitions
 - Primary ~ CDC's influenza-like illness (ILI)
- Predictor: Age
 - Children = ≤17 years
 - Adults = ≥18 years

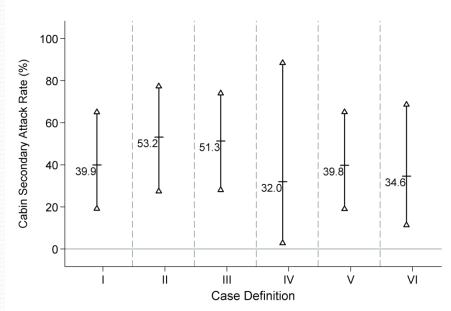
Case Definition	Symptoms
l (ILI)	- Reported Fever or Feverishness and - Cough or Sore throat
II	At least one of the following symptoms: Reported Fever, Feverishness, Cough, Sore throat, Diarrhea, Difficulty breathing, Runny nose, or Vomiting
III	Reported Fever or Feverishness
IV	Reported Fever with measured temperature ≥ 100.4°F (38°C)
V	Reported FeverandCough or Sore throat
VI	 Reported Fever with measure temperature ≥ 100.4°F (38°C) and Cough or Sore throat


Descriptive Statistics for the Primary Case Definition (I)

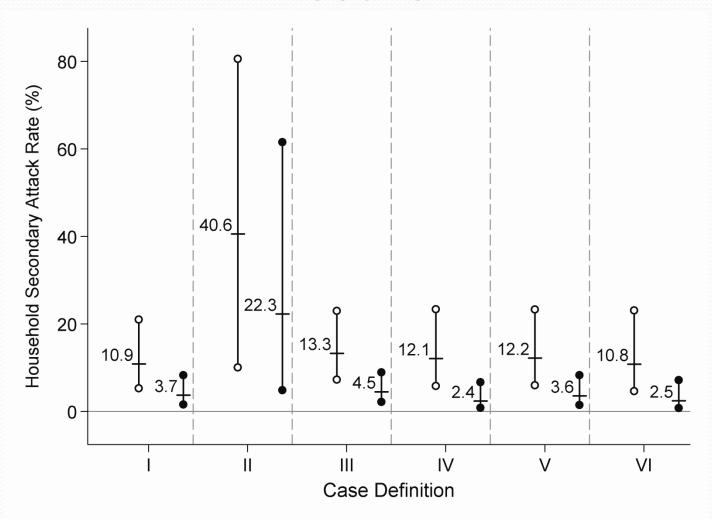
Characteristic	Camp Participants (N = 96)	Household Contacts (N = 136)
No. male (%)	38 (40%)	63 (28%)
Age (years)		
Children (≤17 years): No. (% of all individuals)	79(82%)	48 (35%)
Adult (≥18 years): No. (% of all individuals)	17(18%)	88 (65%)
Mean (SD: Range)	16(12: 10, 59)	34(18: o.5, ₇₄)
Number of cabins or households	13	41
Individuals per cabin or household: Mean (SD: Range)		
Children	7.2(2.1: 4, 10)	1.2(0.8: 0, 3)
Adults	3.0(2.0: 1, 5)	2.1 (0.7: 1, 5)
All individuals	6.3(2.8: 1, 10)	3.3(1.3: 1, 8)

- Camp: 51% (N = 49)
- Household contacts: 8% (N=11)
- Camp: 5 cases were laboratory-confirmed

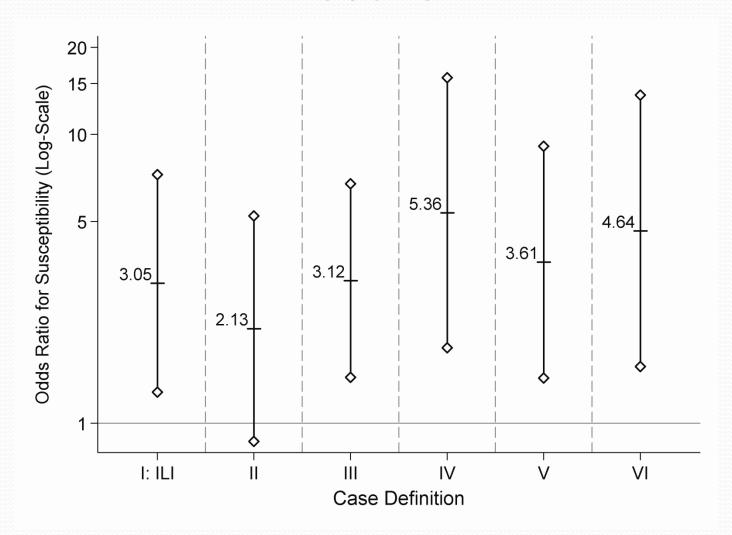



Pause to Demonstrate Case 5

Results: Camp Transmission


Camp Local R: Daytime

Cabin SAR: Nighttime



Results:

Results:

Limitations

- Low survey response rate: 66%
 - Selection bias: differential response for case vs. non-case
 - If all non-respondents had been ...
 - Non-cases: camp ILI attack rate = 34%
 - Cases: camp ILI attack rate = 68%
 - Households: condition out the camp-attending index cases
- Limited laboratory confirmation:
 - 5 of 49 camp cases
 - Multiple case definitions: sensitivity analysis
- Small sample size: limited number of age groups

Summary

- Observed ...
 - Children are significantly more susceptible than adults to symptomatic pH1N1
 - Elevated transmission in the camp, which is similar to levels reported for schools
 - Lower-than-expected transmission in households, which is similar to other published estimates
- SAR's and R were not sensitivity to assumptions about the incubation/latent and infectious period distributions

Lecture Summary

- TranStat is designed to...
 - Estimate transmission parameters from clustered infectious disease surveillance data
 - Estimate covariate effects on transmission
 - Provide real-time estimates of these parameters
- The data input format and transmission model are quite flexible, making TranStat useful for analyzing a wide range of potential situations involving transmission of an acute infection within clusters/groups of individuals
- TranStat will continue to be updated, new features will be added, and these will freely-available through www.cidid.org/software-development/.
- A graphical user interface is currently being developed, with a target completion date of July 30, 2015. The GUI version of TranStat and associated documentation will be made available on the CIDID website, soon thereafter.