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Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) transmission across different settings can help design less disruptive interven-
tions. We used real-time, privacy-enhanced mobility data in the New York City, NY and
Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2
infection to estimate the where, when, and magnitude of transmission events during the
pandemic’s first wave. We estimate that only 18% of individuals produce most infections
(80%), with about 10% of events that can be considered superspreading events (SSEs).
Although mass gatherings present an important risk for SSEs, we estimate that the bulk
of transmission occurred in smaller events in settings like workplaces, grocery stores, or
food venues. The places most important for transmission change during the pandemic
and are different across cities, signaling the large underlying behavioral component
underneath them. Our modeling complements case studies and epidemiological data
and indicates that real-time tracking of transmission events could help evaluate and
define targeted mitigation policies.

COVID-19 | mobility | location | superspreading event

Without effective pharmaceutical interventions, the COVID-19 pandemic triggered the
implementation of severe mobility restrictions and social distancing measures worldwide
aimed at slowing down the transmission of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). From shelter in place orders to closing restaurants/shops or restricting
travel, the rationale of those measures is to reduce the number of social contacts, thus
breaking transmission chains. Although individuals may remain highly connected to
household members or close contacts, these measures reduce the connections in the general
community that allow the virus to move through the network of human contacts. Some
venues may attract more individuals from otherwise unconnected social networks or may
attract individuals who are more active and thus have greater exposure. Understanding
how interventions targeted at particular venues could impact transmission of SARS-CoV-
2 can help us devise better nonpharmaceutical interventions (NPIs) that pursue public
health objectives while minimizing disruption to the economy, the education system, and
other facets of everyday life.

Although it is by now clear that NPIs have helped to mitigate the COVID-19 pandemic
(1), most of the evidence is based on measuring the subsequent reduction in the case
growth rate or secondary reproductive number. For example, econometric models were
used to estimate the effect of the introduction of NPIs on the secondary reproductive
number (2, 3). Other studies have shown directly (through correlations or statistical
models) (4) or indirectly (through epidemic simulations) (5, 6) the relationship between
mobility or individuals’ activity and number of cases. Unfortunately, most of the data used
so far do not have the granularity required to assess how social contacts and SARS-CoV-2
transmission events are modified by NPIs (7).

This is especially important given the heterogeneous spreading of SARS-CoV-2.
Overdispersion in the number of secondary infections produced by a single individual
was an important characteristic of the 2003 SARS pandemic (8) and has been similarly
observed for SARS-CoV-2 (9). Several drivers of superspreading events (SSEs) have
been proposed: biological, due to differences in individuals’ infectiousness; behavioral,
caused by unusually large gatherings of contacts; and environmental, in places where
the surrounding conditions facilitate spread (10). Transmissibility depends critically on
the characteristics of the place where contacts happen, with many SSEs documented
in crowded, indoor events with poor ventilation. A characteristic of this overdispersion
is that most infections (around 80%) are due to a small number of people or places
(20%), suggesting that better-targeted NPIs or cluster-based contact tracing strategies
can be devised to control the pandemic (11). Although several studies have provided
insights on SSEs (7, 12), given their outsized importance for SARS-CoV-2, we need better
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Fig. 1. Network components, New York and Seattle metropolitan areas population and social contacts dynamics at the community layer over time. (A) A
schematic illustration of the weighted multilayer and temporal network for our synthetic population built from mobility data. There are four different layers;
the school and household layers are static over time, and the combined workplace and community layers have a daily temporal component. (B) The geographic
penetration (fraction of mobile devices by population) from our mobility data compared to the total population for the New York and Seattle metropolitan areas.
(C) The average daily number of contacts in the community layer for both metropolitan areas.

information about where, when, and to what extent these SSEs
happen and how they may be mitigated or amplified by NPIs.

In this paper we use a longitudinal database of detailed
mobility and sociodemographic data to estimate the probability of
contact and transmission between individuals in different places
across the New York City, NY and Seattle, WA metropolitan
areas, during the period from 17 February to 1 June 2020
(SI Appendix, section 1). Note that the metropolitan areas
considered extend beyond the city limits for both locations. We
selected these areas because of their large differences in COVID-
19 epidemiology, population size, and density. The New York City
metro area has a population of 20 million people, while the Seattle
metro area has 3.8 million inhabitants. Moreover, the New York
City metro area has a higher density (5,438 people per square
kilometer, median by census tract) than Seattle (1,576 people per
square kilometer). Finally, the number of reported COVID-19
cases/deaths during the study period in the New York City area
was very large (223 per 100,000) compared to that in the Seattle
area (24 per 100,000). Individual mobility data are sampled to be
representative of the different census areas (census block groups)
(Fig. 1). Probabilistic estimation of contact between individuals is
weighted according to the likelihood of exposure between them in
the different places around the metro areas. This defines a weighted
temporal network consisting of four layers representing the
probabilistic estimation of physical/social interactions occurring
in 1) the community, 2) workplaces, 3) households, and 4) schools
(Fig. 1). The community and workplace layers are generated

using 4 mo of data observed in the New York City and Seattle
metropolitan areas from anonymized users who opted in to
provide access to their location data, through a General Data
Protection Regulation (GDPR)–compliant framework provided
by Cuebiq (SI Appendix, section 1).

The data allow us to understand how infection can propagate in
each layer by estimating the probability of transmission between
individuals in the same setting, including schools, workplaces,
households, and multiple locations in the community. Settings
associated to the community are obtained from a large database of
375,000 locations in New York City and 70,000 locations in Seat-
tle from the Foursquare public application programming interface
(API). By measuring the probability that people interact in the
different layers, we construct a probabilistic time-varying contact
network of ωijt between individuals i and j on the same day t in
the education, community, work, and household layers. Estimates
of transmission in the community layer are done by extracting
stays of users to the settings using different time and distance in
the setting. Our results are independent of the particular choice
of minimal time (5 or 15 min) and maximum distance to the
setting (10 or 50 m); see Fig. 1 and SI Appendix, sections 1 and 2
for more information about the data and layers. Our model
covers all possible interactions in urban areas and not just foot
traffic to commercial locations that people visit (7), something
especially important given the relevant role of households, schools,
or workplaces in the transmission of SARS-CoV-2. It is impor-
tant to note that the underlying data do not provide a direct
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Fig. 2. Evolution of the first wave. (A) Weekly number of deaths in New York (NY) and Seattle (ST) metro areas. The dots/triangles represent the reported
surveillance data used in the calibration of the models. The lines represent the median of the model ensemble for each location and the shaded areas the 95%
CI of the calibrated model (17). (B) Evolution of the effective reproduction number according to the output of the simulation. The solid (dashed) line represents
the median of the model ensemble and the shaded areas the 95% CI of the model. (C) Estimated prevalence in our model (median represented with solid/dashed
lines and 95% CI with the shaded area) and values reported by the CDC (dots/triangles represent New York and Seattle data, respectively) (18). (D) Estimated
number of deaths if the NPIs had been applied in New York 1 wk earlier/later. Solid (dashed) lines represent the median of the model ensemble and the shaded
areas the 95% CI. (E) Estimated evolution of the effective reproduction number if the measures had been applied in New York 1 wk earlier/later. Solid (dashed)
lines represent the median of the model ensemble. (F) Estimated prevalence in New York (Left) and Seattle (Right) if the NPIs had been applied in New York 1 wk
earlier/later and in Seattle 1 wk later. The height of the bars represents the median of the model ensemble, while the vertical error bars represent the 95% CI.
The dot/triangle shows the value reported by the CDC for the last week of April 2020.

measurement of contacts between individuals and the nature of
these contacts (masked/unmasked, with conversation). Rather,
our method uses these data to extrapolate the locations visited
by each subject and the amount of time the subject spent there,
to estimate the transmission probability between individuals,
relaxing the homogeneous mixing assumption commonly used
in mathematical modeling approaches. In simpler terms, our
method does not detect directly colocation of individuals, but
rather is a probabilistic estimation of the transmission between
them according to the time they spend in the same places or layers.

To model the natural history of the SARS-CoV-2 infection,
we implemented a stochastic, discrete-time compartmental
model on top of the contact network ωijt in which individuals
transition from one state to the other according to the
distributions of key time-to-event intervals (e.g., incubation
period, serial interval, etc.) as per available data on SARS-
CoV-2 transmission (see SI Appendix, section 3 for details). In
the infection transmission model, susceptible (S) individuals
become infected through contact with any of the infectious
categories (infectious symptomatic [IS], infectious asymptomatic
[IA], and presymptomatic [PS]), transitioning to the latent (L)
compartment, where they are infected but not infectious yet.
Latent individuals branch out in two paths according to whether
the infection will be symptomatic or not. We also consider that
symptomatic individuals experience a presymptomatic phase and
that once they develop symptoms, they can experience diverse
degrees of illness severity, leading to recovery (R) or death (D).
The value of the basic reproduction number is calibrated to the
weekly number of deaths (see SI Appendix, sections 4, 5, and 7
for further information on the calibration process, on the model’s

details, and for the sensitivity of our results toward different values
of parameters used in the model).

Results

Impact of NPIs. Our data clearly show that the statistics of
potential contacts in the two metro areas have changed due to the
introduction of NPIs during the week of 15 March to 22 March
(Fig. 1). A National Emergency was declared on 13 March, and the
New York City School System announced the closure of schools
on 16 March (13). The New York City mayor issued a “shelter
in place” order in the city on 17 March (14), and nonessential
businesses were ordered to close or suspend all in-person functions
in New York, New Jersey, and Connecticut by 22 March. As
we can see in Fig. 1 the individuals’ total number of contacts
decreased dramatically from around seven (in our community
layer) to below two. In Seattle, the reduction of contacts started 1
wk earlier than in New York City, coinciding with earlier closing
of some schools (15) and the Seattle mayor issuing a proclamation
of civil emergency on 3 March (16).

In Fig. 2 we report numerical simulations of the epidemic curve
that accurately reproduce the evolution of the incidence of new
COVID-19–related deaths in both New York and Seattle metro
areas, even though both cities were affected very differently by the
epidemic in the first wave. The analysis identifies the impact of
the reduction in the estimated number of contacts due to the
implemented NPIs: In both the New York and Seattle metro
areas, Rt dropped below one 1 wk after NPIs were introduced.
To estimate the importance of timely implementations of NPIs
in metropolitan areas, we have generated counterfactual scenarios

PNAS 2022 Vol. 119 No. 26 e2112182119 https://doi.org/10.1073/pnas.2112182119 3 of 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
7.

11
3.

20
4.

11
1 

on
 S

ep
te

m
be

r 
28

, 2
02

2 
fr

om
 I

P 
ad

dr
es

s 
97

.1
13

.2
04

.1
11

.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2112182119/-/DCSupplemental
https://doi.org/10.1073/pnas.2112182119


0.0

0.2

0.4

0.6

0.8

1.0
P

ro
p

o
rt

io
n

 o
f 

in
fe

ct
io

n
s

A

0

1

2

3

4

In
fe

ct
io

n
s 

in
 t

h
e

 C
o

m
m

u
n

it
y

p
e

r 
1

,0
0

0
 p

e
o

p
le

B

0

20

40

60

80

100

In
fe

ct
io

n
s 

in
 t

h
e

 C
o

m
m

u
n

it
y

p
e

r 
1

,0
0

0
 p

e
o

p
le

C

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o

rt
io

n
 o

f 
in

fe
ct

io
n

s

D

0.00

0.05

0.10

0.15

0.20

In
fe

ct
io

n
s 

in
 t

h
e

 C
o

m
m

u
n

it
y

p
e

r 
1

,0
0

0
 p

e
o

p
le

E

0

20

40

60

80

100

In
fe

ct
io

n
s 

in
 t

h
e

 C
o

m
m

u
n

it
y

p
e

r 
1

,0
0

0
 p

e
o

p
le

F

Community
Education

Household
Workplace

Grocery
Shopping
Food/Beverage

Service
Health
Other

Entertainment
Exercise
Transportation

Arts/Museum
Outdoors
Sports/Events

New York

Seattle
2/17 3/9 3/30 4/20 5/11 6/1

2/17 3/9 3/30 4/20 5/11 6/1

2/17 3/9 3/30 4/20 5/11 6/12/17 3/9 3/30 4/20 5/11 6/1

2/17 3/9 3/30 4/20 5/11 6/1 2/17 3/9 3/30 4/20 5/11 6/1

Fig. 3. Spatial spreading of the disease. (A and D) The share of infections across layers in New York (A) and Seattle (D). (B and E) The estimated location where
the infections took place for New York (B) and Seattle (E) in the community layer. Note that the y axis is 20 times smaller in Seattle. The evolution has been
smoothed using a rolling average of 7 d. (C and F) The distributions are normalized over the total number of daily infections, showing how infections were
shared across categories in the community layer. The evolution has been smoothed using a rolling average of 7 d.

in which the NPIs and the ensuing reduction in the number of
contacts could have happened 1 wk earlier or later than the actual
timeline (19). The comparison between New York and Seattle is
relevant, because we observed that the reduction in contacts in
Seattle started to happen exactly 1 wk before that in New York. To
this end we have shifted in time the contact patterns around the
week where NPIs where introduced in both cities. The results for
these scenarios are reported in Fig. 2D, where we see that a 1-wk
delay in introducing NPIs could have yielded a peak in the number
of deaths two times larger than the observed one (0.7 deaths per
1,000 people compared to the 0.35 per 1,000). This doubling
in peak deaths following a 1-wk delay is also observed in the
Seattle metro area and in the cumulative infection prevalence in
the metro area. Conversely, a 1-wk earlier implementation of the
NPIs timeline in the New York area could have reduced the death
peak by more than a factor of 3, a result similar to that found using
county-level simulations (19). In Seattle, implementing the NPIs
1 wk earlier would have prevented the first wave of infections. For
this reason, the results are not shown in Fig. 2F.

Taxonomy of Transmission Events. The high resolution of our
dataset allows us to estimate the relevance of different settings and
the effects of NPIs on the transmission dynamic of SARS-CoV-2.
People spent different times in each layer and place before and after
the introduction of NPIs (SI Appendix, section 1). As a result,
the number of infections varied significantly during the observed
period. As we can see in Fig. 3, before NPIs were introduced, we
estimate that most infections took place in the community and
workplace layers. Once restrictions were implemented in both
cities on 16 March, as expected, the proportion of infections in
the household layer greatly increased, especially in the New York
area. In Seattle, the numbers of infections in the workplace and
household layers were comparable, probably because the number

of cases overall was lower than in New York. We can further stratify
data by venue type in the community layer as in Fig. 3, by looking
at the estimated top categories (see SI Appendix, section 1 for their
definition) in terms of the number of total infections throughout
the whole period. Before the NPIs were introduced, our model
estimates that most of the infections in the community layer
happened in food/beverage, shopping, and exercise venues. Also,
a significant number of infections happened in art/museums and
sport/events venues. After the introduction of NPIs, the number
of infections in exercise, sports/events or art/museums venues
decreases as expected. However, food, groceries, and shopping
venues became the main community setting for transmission in
both cities.

Superspreading Events. Our agent-based simulations also allow
us to estimate statistically the transmission events by a single indi-
vidual and estimate how many secondary infections the individual
generates. In Fig. 4 we report the distribution of the number of
secondary infections produced by each individual in the com-
munity layer only. This is driven by individual-level differences
in activity and those individuals the individual might interact
with. The distribution is highly skewed and can be modeled by
a negative binomial distribution with dispersion parameters (k)
of 0.16 (New York) and 0.23 (Seattle), in agreement with the
evidence accumulated from SARS-CoV-2 transmission data (9,
10, 20, 21). As a result, SSEs are likely to be observed. We
define a transmission event as a SSE if the individual infects
in a specific location category more than the 99th percentile of
a Poisson distribution with average equal to R (see ref. 8 and
SI Appendix, section 6 for further details), here corresponding to
an infected individual infecting eight or more others. Interestingly,
if we compare the distribution of secondary infections produced
before and after the introduction of NPIs, even though we see a
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Fig. 4. Behavioral superspreading events. (A and B) Distribution of the num-
ber of infections produced by each individual in New York (A) and Seattle (B)
up to the declaration of National Emergency. The distribution is fitted to a
negative binomial distribution yielding a dispersion parameter of k = 0.163
[0.159 to 0.168] 95% CI and k = 0.232 [0.224 to 0.241] 95% CI, respectively.
Insets represent the same distribution on the log scale and distinguishing
infections that took place before the declaration of National Emergency on
13 March and after that date.

clear reduction of SSEs, we still find a heterogeneous distribution
of secondary infections. Thus, the NPIs did not prevent the
formation of SSEs, but only significantly lowered their frequency.

Consistent with this pattern of overdispersion in the number
of transmission events, we find that the majority of infections are
produced by a minority of infected people: ∼20% of infected
people were responsible for more than ∼85% of the infections
in both metro areas (SI Appendix, Fig. S9). However, note that a
critical driver here of this phenomenon is that a large majority of
infected people (85% in the community layer) do not infect any
others in our simulations. Only a small fraction of infection events
(0.08%) are made of eight (or more) secondary infections.

Transmission events and SSEs did not happen equally in dif-
ferent settings or along time or geography. In Fig. 5 we show the
results of our simulations for the total number of infections pro-
duced in each category and the share of those infections that can be
related to SSEs (SI Appendix, Table S2). The combination of those
two features defines a continuous-risk map in which places can be
at different types of risk: 1) low contribution from SSEs and low
contribution to the overall infections, such as outdoor places; 2)
larger contribution from SSEs but low contribution to the overall
infections, such as sports/events, arts/museums or entertainment
before the introduction of NPIs; 3) large contribution to the
overall infections but with low contribution from SSEs, such as
shopping or food/beverage venues after the introduction of NPIs;
and 4) large number of infections and with large contribution
from SSEs, such as groceries. This classification has important
implications from a public health perspective. For instance, venues
in risk 2 do not have a major contribution to the overall infections
but might represent a challenge for contact tracing. Conversely, for
categories in risk 3 it might be easier to trace chains of transmission
but their total contribution is large. Note that this definition is
not static, but changes over time due to the NPIs imposed by
authorities. Indeed, looking at the weekly pattern of infections

(Fig. 5), we observe how some categories move to a different
quadrant due to the behavior of individuals. Although we estimate
that SSEs and infections were more likely in arts/museums and
sports/events in New York and entertainment and grocery in
both cities, our simulations show that the grocery category still
greatly contributes to the total number of infections, but does
not have as many SSEs after 16 March. On the other hand, we
estimate that SSEs were rare before 9 March in Seattle, but their
contribution doubled in the week of 9 to 15 March—when many
individuals probably went for supplies amid preparation for the
future introduction of NPIs. This observation includes implicitly a
very important message: A place may not be inherently dangerous;
rather, the risk is a combination of both the characteristics of the
place/setting and the behavior of individuals who visit it. This
suggests revisiting studies that find that settings could play always
the same role in the evolution of the pandemic (7).

Discussion

Our results emphasize the intertwined nature of human behavior,
NPIs, and the evolution of the COVID-19 pandemic in two ma-
jor metropolitan areas. Specifically, our results suggest that hetero-
geneous connectivity and behavioral patterns among individuals
lead naturally to differences in risk across settings and the genera-
tion of SSEs. In particular, the implemented partial or full closures
of different settings (e.g., sport venues, museums, workplaces) had
a dramatic effect in shaping the mixing patterns of the individuals
outside the household (22, 23). As a consequence, the settings
responsible for the majority of transmission events and SSEs varied
over time. In absolute terms, the food and beverage setting is
estimated to have played a key role in determining the number
of both transmission events and SSEs in the early epidemic phase;
however, this setting was among the first targets of interventions
and thus its contribution became zero over time because of the
introduced NPIs. On the other hand, settings such as grocery
stores, which consistently provided a low absolute contribution
to the overall transmission and SSEs, became, in relative terms,
a source of SSEs during the lockdown when most other activities
were simply not available. These findings suggest that there is room
for optimizing targeted measures such as extending working time
to dilute the number of contacts or the use of smart working aimed
at reducing the chance of SSEs. That could be especially relevant
to avoid local flareups of cases when the reproduction number is
slightly above or below the epidemic threshold.

Although the overall picture emerging from studying Seattle
and New York is consistent, it is important to stress that each
urban area might have specific peculiarities due to local trans-
portation, tourism, or other economic drivers differentiating the
cities’ life cycle. Our results suggest that a one-size-fits-all solution
to minimize the spread of SARS-CoV-2 might have very different
impact across cities. Furthermore, the results presented may not be
generalized to rural areas. Although large parts of the Seattle metro
area could be considered as rural, individual connectivity patterns
may be differently constrained by the generally lower population
density in some other parts of the country.

We note that less complex homogeneous-mixing models can be
enough to reproduce aggregated features of the spread of SARS-
CoV-2 in different cities (Fig. 2 and SI Appendix, section 7.10),
and detailed (although still homogeneous-mixing) aggregate visi-
tation patterns to places can be used to evaluate the average role
of places in the spreading (7). However, the model proposed here
incorporates both individual mobility behavior and the detailed
description of home, school, and workplace multilayer temporal
networks, thus allowing us to simultaneously capture key aspects
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Fig. 5. Dynamics of SSEs. Risk evolves with time as a function of the behavior of the population and policies in place. (A and B) Risk posed by each category per
week, defined using the corresponding map below. As a reference, the gray area on top shows the estimated weekly incidence. (C and D) The x axis represents
the fraction of total infections that are associated with each category, while the y axis accounts for the share of those infections that can be attributed to SSEs
in each category. Note that the fraction of infections is normalized over all the infections produced in all the social settings throughout the whole period. This
defines a continuous-risk map in which places with few infections and low contribution from SSEs will be situated on the bottom left corner. Places where the
number of infections is high but the contribution from SSEs is low are situated in the bottom right corner. Conversely, places with large contribution from SSEs
but a low amount of infections are situated in the top left corner. Finally, places with both a large number of infections and an important contribution from SSEs
are situated in the top right corner. The color associated to each tile in A and B is extracted from the position of the point in the plane defined in C and D. The
points in C and D show the evolution of the position of the categories arts/museum and grocery for each week, with the arrows indicating the time evolution.

of COVID-19, such as contagion overdispersion (superspreading
events, Fig. 4), the temporal evolution of the risk of infection
by social setting (Fig. 5), or the impact of school closures or
stay-at-home policies (Fig. 3). By having a better description of
mobility patterns at the individual level, our methodology relies
only on a minimal set of parameters, making it more generalizable
to other locations of epidemic context than models that encode
that behavior by fitting transmissibility parameters for places,
residences, cities, or even temporal periods (7).

Our modeling analysis does not have the ambition to sub-
stitute field investigations, which remain the primary source of
evidence. Some of the reported findings (e.g., the role of food
and beverage venues or groceries) appear to be in agreement
with epidemiological investigations (7, 24–27). Future empirical
analyses could provide further validation of our findings. Our
modeling investigation is based on real-time data on human
mobility/activity that provide an indirect proxy for infection trans-
mission. One of the strengths of this approach is that, different
from epidemiological investigations, the data can be retrieved in
real time and longitudinally, thus allowing us to quickly capture
possible changes in the most relevant settings for transmission.
Furthermore, our approach could help minimize the noisy and
biased data collection related to massive transmission events (28).
Yet, the approach used here is far from capturing all the finest
details of human social contacts and thus the estimates on the
contribution of different settings to SARS-CoV-2 transmission
entail an unavoidable uncertainty.

To properly interpret our results, it is important to acknowledge
the limitations of the assumptions included in our modeling

exercise. First, we have considered a decrease of the transmission
probability in outdoor compared to indoor settings of January
2020 (29). Although this choice is guided by empirical evidence
and our results are robust to this choice (SI Appendix, section 7),
further studies better quantifying the relative risk of indoor vs.
outdoor transmission are warranted. Second, our model neglects
to consider differences in the behavior that people follow when
in contact with each other. It is indeed possible that contacts
between relatives and friends have a larger chance of resulting in
a transmission event compared with interactions with strangers
(30). Third, we do not model nursing homes, which were severely
hit by the COVID-19 pandemic across the globe. However,
although they represent a key setting to determine COVID-19
burden in terms of deaths and patients admitted to hospitals and
intensive care units, they are possibly not central to capture the
transmission dynamics of SARS-CoV-2 at the population level,
which is the aim of this study. Although there is some location
information from hospitals, we do not model them. Nonetheless,
contact tracing studies from several countries have revealed that
transmission within hospitals is relatively low, and hospital staff
are more at risk from interactions with their coworkers (e.g., in
the breakroom) or out in their communities (31, 32).

In conclusion, the majority of NPIs introduced in large urban
areas in March 2020 were effective in dramatically slowing down
the first wave of COVID-19 by greatly reducing the number
of effective contacts in the population. Closing down schools,
businesses, workplaces, and social venues, however, took (and still
does take) an enormous toll on our economy and society. Our
results and methodology allow for a real-time data-driven analysis
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that connects NPIs, human behavior, and the transmission dy-
namic of SARS-CoV-2 to provide quantitative information that
can aid in defining more targeted and less disruptive interventions
not only at a local level, but also to assess whether local restrictions
could trigger undesired effects at nearby locations not subject
to the same limitations. Although nowadays the epidemiological
landscape has dramatically changed by the introduction of vac-
cines, the spread of more transmissible variants, and the buildup
of natural immunity, the results offered in this paper provide
unique insights on the transmission pathways of SARS-CoV-2 and
can be instrumental for the definition of location-based mitiga-
tion policies and for making informed decisions about high-risk
activities.

Materials and Methods

We used individual-level mobility data of over 0.5 million individuals distributed
in the New York and Seattle metropolitan areas during the months of February
2020 to June 2020 to estimate the day and type of venues where people might
have interactions that yield transmission events. To do that we extracted from
the mobility data the stays (stops) of people in a large collection of around
440,000 settings (33). With this information we built two synthetic populations,
one for each metropolitan area, in which agents can interact in different settings:
workplaces, households, schools, and the community (points of interest). We then
explore the transmission of SARS-CoV-2 using a compartmental and stochastic
epidemic model applied on top of this population.

The behavioral changes induced in the population by the introduction of
several NPIs are naturally encoded in the mobility data, allowing us to charac-
terize the effect of these interventions. We ran counterfactual simulations of our
stochastic epidemic model to understand that effect. Furthermore, the resolution
of these data allows us to characterize the spreading through different types of
venues at different stages of the epidemic, depicting a complex picture in which
the combination of both the characteristics of the place/setting and the behavior
of individuals who visit it determine its risk.

Finally, the information about the statistical heterogeneity of the contact pat-
tern of different individuals allows us to study the frequency and characteristics
of behavior-related SSEs. We study the likelihood of finding a SSE per setting
as a function of time by looking at the number of infections produced by each
individual in each location. A full description of the materials and methods is
provided in SI Appendix.

Data Availability. Mobility data are available from Cuebiq, available upon
request submitted to https://www.cuebiq.com/about/data-for-good/. Other data
used come from the American Community Survey (5y) from the Census, which
is publicly available at their website. Anonymized aggregated temporal contact
matrices data and code to run the models have been deposited on GitHub
(https://github.com/aaleta/NHB COVID).
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