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Abstract

Within-host models are useful tools for understanding the processes regulating viral load dynamics. While existing models
have considered a wide range of within-host processes, at their core these models have shown remarkable structural
similarity. Specifically, the structure of these models generally consider target cells to be either uninfected or infected, with
the possibility of accommodating further resolution (e.g. cells that are in an eclipse phase). Recent findings, however,
indicate that cellular coinfection is the norm rather than the exception for many viral infectious diseases, and that cells with
high multiplicity of infection are present over at least some duration of an infection. The reality of these cellular
coinfection dynamics is not accommodated in current within-host models although it may be critical for understanding
within-host dynamics. This is particularly the case if multiplicity of infection impacts infected cell phenotypes such as their
death rate and their viral production rates. Here, we present a new class of within-host disease models that allow for
cellular coinfection in a scalable manner by retaining the low-dimensionality that is a desirable feature of many current
within-host models. The models we propose adopt the general structure of epidemiological ‘macroparasite’ models that
allow hosts to be variably infected by parasites such as nematodes and host phenotypes to flexibly depend on parasite
burden. Specifically, our within-host models consider target cells as ‘hosts’ and viral particles as ‘macroparasites’, and allow
viral output and infected cell lifespans, among other phenotypes, to depend on a cell’s multiplicity of infection. We show with
an application to influenza that these models can be statistically fit to viral load and other within-host data, and demonstrate
using model selection approaches that they have the ability to outperform traditional within-host viral dynamic models.
Important in vivo quantities such as the mean multiplicity of cellular infection and time-evolving reassortant frequencies can
also be quantified in a straightforward manner once these macroparasite models have been parameterized. The within-host
model structure we develop here provides a mathematical way forward to address questions related to the roles of cellular co-
infection, collective viral interactions, and viral complementation in within-host viral dynamics and evolution.
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1. Introduction

In part through the development and analysis of mathematical
models, the processes driving the within-host dynamics of viral
infections have been increasingly well understood over the last
two decades. Statistical fitting of models to within-host data
such as viral load measurements and immune response data
have yielded estimates of within-host basic reproduction num-
bers for various viral pathogens, including HIV (Ribeiro et al.
2010), influenza (Baccam et al. 2006; Saenz et al. 2010; Pawelek
et al. 2012), measles (Heffernan and Keeling 2008), and dengue
(Ben-Shachar and Koelle 2014; Clapham et al. 2014). These fits
have further characterized the roles of the innate immune re-
sponse (Saenz et al. 2010; Pawelek et al. 2012; Ben-Shachar and
Koelle 2014), and, particularly in secondary infections, the adap-
tive immune response (Handel, Longini, and Antia 2010;
Ben-Shachar and Koelle 2014) in regulating within-host viral dy-
namics. The structure of these within-host models has gener-
ally mirrored the structure of epidemiological ‘microparasite’
models, with cells being considered either uninfected or
infected. In some models (Saenz et al. 2010; Pawelek et al. 2012),
uninfected cells have been further categorized as either suscep-
tible or refractory to infection, again, mirroring hosts who are
either susceptible or immune to infection in epidemiological
models.

While these within-host models capture many of the impor-
tant features of within-host viral processes, the majority of
them implicitly assume that cellular coinfection does not occur
(Smith and Perelson 2011) or that cellular coinfection, if it
occurs, does not affect the phenotypes of infected cells (Dixit
and Perelson 2004; Phan and Wodarz 2015). Yet several experi-
mental findings point toward cellular multiplicity of infection
(MOI) having the potential to impact cellular phenotypes such
as the rate at which infected cells produce viral output (White
et al. 1965; White and Cheyne 1966), the duration of the eclipse
phase (Dou et al. 2017), and the probability of a cell initiating an
interferon response (Gifford 1963). The implicit assumption that
a cell’s MOI does not impact its phenotypes is hard-wired into
‘microparasite’-structured models because these models gener-
ally only consider a single class of infected cells, regardless of
cellular MOI. With increasing genomic evidence that cellular co-
infection frequently occurs in chronic viral infections such as
HIV (Onafuwa-Nuga and Telesnitsky 2009) and hepatitis C virus
(Ke et al. 2018), as well as in acute viral infections such as influ-
enza (Marshall et al. 2013; Brooke et al. 2014; Fukuyama et al.
2015), a few notable models have been developed that have ac-
commodated the possibility of cellular coinfection (Dixit and
Perelson 2004, 2005; Wodarz and Levy 2009, 2011; Phan and
Wodarz 2015). However, these models either remain high di-
mensional (Phan and Wodarz 2015) or have made the assump-
tion that host cell resources are limiting, such that viral output
is independent of the extent of cellular coinfection (Dixit and
Perelson 2005). While this assumption may be warranted for
some viruses, it is likely not met in the case of many other viral
pathogens.

Here, we develop a new class of low-dimensional within-
host models whose structure flexibly allows for cellular coin-
fection. We base this new class of models on the structure of
epidemiological ‘macroparasite’ models (Roberts, Smith, and
Grenfell 1995). Development of these powerful epidemiological
models started in the 1970s (Anderson and May 1978, 1992),
and they are now being commonly used to study how macro-
parasites (such as nematodes) spread through host popula-
tions (e.g. see Hollingsworth et al. 2015). They have further

been used to assess the effect of control strategies on disease
burden and host mortality (Truscott, Hollingsworth, and
Anderson 2014). We specifically develop this class of within-
host ‘macroparasite’ models in the context of acute viral infec-
tions, although their structure can also easily accommodate
the within-host dynamics of chronic infections. Finally, to
demonstrate the usability of these models, we fit specific
instances of these models to a classic within-host equine in-
fluenza dataset that has previously been analyzed with exist-
ing within-host ‘microparasite’ influenza models (Saenz et al.
2010; Pawelek et al. 2012). By performing model selection, we
show that the macroparasite models developed here can out-
perform existing models. These results demonstrate that this
new class of models is a viable alternative to traditional
within-host ‘microparasite’ models.

2. Methods

The structure of the within-host viral dynamic models we pro-
pose is based on a close analogy to population-level macropara-
site models that are well-established and frequently used in
the field of disease ecology and epidemiology (Fig. 1).
In Supplementary Text S1, we briefly review the derivation of
the canonical structure of these population-level macroparasite
models. Co-opting this canonical formulation for within-host
viral dynamics allows us to flexibly model cells that have be-
come infected with 0, 1, . . ., n viral particles, while maintaining
a low-dimensional set of equations.

2.1 Target-cell limited macroparasite models

The simplest version of the within-host macroparasite model is
a target-cell limited model. In its most general form, this model
is given by:

dH
dt
¼ a� bH�H

X1
i¼0

aipi; (1)

dV
dt
¼ H

X1
i¼0

kipi � gV � bHV; (2)

dP
dt
¼ bHV � bH

X1
i¼0

ipi �H
X1
i¼0

iaipi: (3)

The variable H quantifies the total number of target cells,
which includes both uninfected and variably infected cells.
In this model, both uninfected and infected cells can be targets
of further infection, so this variable differs from the variable
representing uninfected target cells in traditional within-host
microparasite models. In Equation (1), a is the constant rate of
target cell production and b is the per capita background mortal-
ity of target cells. In the absence of infection, the target cell

population equilibrates to H = a/b. The third term,�H
P1
i¼0

aipi, is

the decrease in the number of target cells due to virus-induced
mortality. Here, ai is the death rate of cells that are infected with
a cellular MOI of i, and pi is the proportion of target cells that are
infected with a cellular MOI of i. As such, pi over all cellular
MOIs (i 2 ½0;1Þ), is a probability mass function that describes
the distribution of cells infected with zero viral particles, one vi-
ral particle, two viral particles, etc.

The variable V quantifies the amount of free (extracellular)
virus, and is analogous to the free virus variable generally mod-
eled in traditional within-host microparasite models. The first
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term, H
P1
i¼0

kipi, quantifies the overall rate at which free virus is
produced from target cells, where ki is the rate at which
cells infected with an MOI of i produce free virus, and pi again
quantifies the proportion of the target cell population that is
infected with i viral particles. The second term quantifies the rate
of viral clearance, and the third term captures loss of free virus
from its entry into target cells. This third term is often lost in tradi-
tional within-host microparasite models, with an argument that
loss of free virus from cell entry is negligible relative to loss of free
virus through viral clearance (Smith and Perelson 2011).

The variable P quantifies the total amount of internalized
virus across all target cells H and does not have an analog in
traditional within-host microparasite models. This variable is
related to, but distinct from, cellular MOI. While cellular MOI
quantifies the number of viral particles a single cell has
internalized, the variable P quantifies the number of internal-
ized viral particles across all existing target cells. The first term
in Equation (3) captures the increase in the number of internal-
ized virions from the entry of free virus V into target cells H. The

second term, bH
P1
i¼0

ipi, captures loss of internalized virus

through background mortality of target cells. Here, each cell,

regardless of cellular MOI, dies at a rate b. When a cell with
i internalized viral particles dies, this results in the loss of
i internalized virions, such that the overall rate at which inter-
nalized particles P are lost from the system through background

mortality is given by bH
P1
i¼0

ipi. The third term, H
P1
i¼0

iaipi, captures

the loss of internalized virus through virus-induced mortality.
Here, a cell infected with i viral particles dies at a rate ai. When
it dies, its i internalized viral particles are lost from the system.
As such, across the entire system, the overall rate at which in-
ternalized particles P are lost through virus-induced mortality is

given by H
P1
i¼0

iaipi.

At this point, we can further simplify the model by adopting
specific assumptions. For instance, in an acute viral infection,
the rate of target cell production a and the background rate of
cell mortality b are frequently assumed to be small, such that
the terms that include these parameters can be ignored. We
can also make certain assumptions about how infected cell
phenotypes, such as virus-induced cellular death rates and vi-
rus production rates, scale with cellular MOI. For example, we
can make analogous assumptions to the ones made in

Figure 1. A schematic showing parallels between epidemiological and within-host infectious disease models. Epidemiological models fall into two groups: (A) models

for microparasites and (B) models for macroparasites, such as nematodes. Models for microparasites categorize individuals as being infected or uninfected. Models for

macroparasites consider the parasite burden of infected individuals, as this burden affects the production rate of macroparasites from infected hosts and the mortality

rate of hosts. (C) General structure of current within-host disease models. These models generally categorize cells as being infected or uninfected. (D) Schematic of a

within-host ‘macroparasite’ model, proposed here. Models of this type would consider the multiplicity of cellular infection, as multiplicity of infection affects the rate

of viral production and the lifespan of infected cells, among other phenotypes.
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epidemiological macroparasite models, specifically, that the
viral production rate is linearly related to cellular MOI (ki ¼ ki,
where k is now a scalar constant), and that the cell mortality
rate scales linearly with cellular MOI (ai ¼ ai, where a is now
also a scalar constant). Applying these specific assumptions,
Equations (1–3) become the following for an acute infectious
disease:

dH
dt
¼ �aP; (4)

dV
dt
¼ kP� gV � bHV; (5)

dP
dt
¼ bHV � aH

X1
i¼0

i2pi: (6)

To further simplify Equation (6), we can again adopt an anal-
ogous assumption to one that is present in epidemiological
macroparasite models: that the distribution of cellular MOIs is
given by a negative binomial distribution with mean P/H and
dispersion parameter k in the range of (0, 1). This assumption
simplifies Equation (6) to:

dP
dt
¼ bHV � aP� a

ð1þ kÞ
k

P2

H
: (7)

The negative binomial distribution allows for the possibility
of cellular MOI overdispersion (low k), while still allowing for a
Poisson distribution of cellular MOIs when k = 1.
Overdispersion of cellular MOIs in vivo is highly likely for sev-
eral reasons. First, some target cells might be more susceptible
to infection than others due to variation in the number and
types of receptors. Second, given spatial aspects of within-host
viral spread, there is likely considerable variation in the rate at
which cells are exposed to virus. Third, variation in the time
cells remain in their eclipse phase can under certain condi-
tions produce overdispersion of cellular MOIs (Supplementary
Text S2).

We can define the within-host basic reproduction number R0

for the specific target-cell limited model given by Equations (4),
(5), and (7) as the number of new, successfully internalized viral
particles generated by a single internalized viral particle at the
onset of an individual’s infection when the overwhelming ma-
jority of target cells are uninfected. To derive R0 for this model,
we can first make a fast viral dynamics assumption, such that
dV
dt � 0 and V � kP

gþbH. Plugging this expression into Equation (7),
and recognizing that the ratio P2

H � 0 at the onset of infection,

yields: dP
dt ¼ kH

g=bþH P� aP. From this expression, it is clear that

R0 ¼
k

H0
g
b
þH0

h i
a , where H0 is the number of target cells present at the

beginning of the infection. While we assume fast viral dynamics
in the derivation of R0, we continue to model within-host viral
dynamics under the target-cell limited version of this model us-
ing all three variables (H, V, and P). We do this because it is un-
common to assume fast viral dynamics in within-host models
and retaining V in the model allows for a more straightforward
interface with viral load data.

Since little is known about how viral production rates and
cellular mortality rates scale with cellular input, alternative
assumptions can also be made that would still allow for a sim-
plification of Equations (1–3). For example, it could be assumed
that viral production rates are independent of cellular input, as
long as a cell is infected. This assumption would implicitly

assume that host cell machinery is the limiting factor governing
viral production from a cell. This assumption would lead to
Equation (2) becoming:

dV
dt
¼ kH 1� 1

1þ P=ðHkÞ

� �k
 !

� gV � bHV; (8)

where the term 1� 1
1þP=ðHkÞ

� �k
� �

provides the probability that a

target cell has internalized at least one viral particle. It could
also be assumed that the cellular mortality rate is independent
of cellular input (as long as there is some input). In this case,
Equations (1) and (3) would become:

dH
dt
¼ �aH 1� 1

1þ P=ðHkÞ

� �k
 !

; (9)

dP
dt
¼ bHV � aP: (10)

We can further determine under what set of assumptions
this within-host macroparasite model would be equivalent to,
or fold into, the structure of a within-host microparasite model.
A particularly useful step to demonstrate the mapping between
the macroparasite model and the microparasite model is to as-
sume that virions are internalized independently of a cell’s MOI.
This assumption would be met under mean-field mixing
assumptions (i.e. in the absence of spatial structure) and by ig-
noring the possibility of superinfection exclusion. In the case of
this assumption, the value of the dispersion parameter is k =1.
With viral production rates and virus-induced cell death rates
that are independent of cellular MOI, Equations (8) and (9)
become:

dV
dt
¼ kH 1� e�P=Hð Þ � gV � bHV (11)

dH
dt
¼ �aH 1� e�P=Hð Þ; (12)

where e�P=H is the (Poisson) probability of a cell not being
infected. Defining the number of currently infected target cells
as I ¼ H 1� e�P=Hð Þ allows one to expand Equation (12) into unin-
fected (T) and infected (I) target cell classes: dT

dt ¼ �bTV and
dI
dt ¼ bTV � aI, respectively. This definition also allows us to sim-
plify Equation (11) to dV

dt ¼ kI� gV, with the third term in
Equation (11) (bHV) assumed to be negligible. The variable P can
be excluded if it assumed to be in equilibrium with V. As such, it
is clear that with the assumption of Poisson-distributed cellular
MOIs, an MOI-independent viral production rate, and an MOI-
independent mortality rate of infected cells, the within-host
macroparasite model folds into the traditional within-host
microparasite model. This finding is consistent with findings
from a previous, high dimensional model for HIV that accom-
modated multiply infected cells (Dixit and Perelson 2005). An
analysis of that model showed that it simplified to the structure
of a within-host microparasite model that had all infected cells
belonging to a single infected class I when viral production rates
(and infected cell mortality rates) were independent of the
number of internalized virions (Dixit and Perelson 2005).

The empirical relationship between cellular input and the
rate of viral production likely depends on virus and host cell
type, and needs to be empirically addressed when applying the
within-host macroparasite model to a specific viral infection.
Similarly, little is known about how cellular mortality rate
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scales with cellular input and experimental studies need to be
performed to address this major knowledge gap.

2.2 Within-host ‘macroparasite’ models incorporating
the host’s immune response

Within-host models of viral infections frequently incorporate
the host’s immune response, since it is this response that is
thought to play a critical role in regulating and ultimately clear-
ing viral infections (Smith and Perelson 2011; Ben-Shachar and
Koelle 2014). Minimally, the host’s immune response can be in-
corporated by considering only the innate immune response,
which can, again at minimum, be captured by a single addi-
tional variable. This variable can encompass the activity of
interferons and cytokines, as well as cells of the innate immune
response such as natural killer (NK) cells. In many models, the
dynamics of specifically interferon-a (IFN-a) have been included,
with interferon production occurring from infected cells and
decaying at a constant rate (Saenz et al. 2010; Pawelek et al.
2012; Ben-Shachar and Koelle 2014). If we assume that cells pro-
duce interferon at a rate (or probability) that scales linearly with
cellular MOI, then the dynamics of interferon-a are given by:

dF
dt
¼ qP� dF: (13)

Generally, measurements of IFN-a have been reported in
units of fold change. As such, the variable F has most commonly
been considered to be in units of fold change (Pawelek et al.
2012). While in Equation (13) we assumed that IFN-a production
scales linearly with cellular MOI, alternative assumptions can
again be made, for example, that all infected cells produce inter-
feron at an equal rate, independent of cellular MOI.

IFN-a can modify viral within-host dynamics in a number of
ways. One way is for it to reduce the rate of viral production
from infected cells. Another way is for it to decrease the suscep-
tibility of cells to infection (or further infection). Both of these
mechanisms of action can be assumed to respond to immediate
levels of interferon. In this case, the viral production rate can be

reduced from H
P1
i¼0

kipi (Equation 2) to H
1þ�F

P1
i¼0

kipi, or similar (as in

Canini and Carrat 2011), and the rate of viral entry into target

cells can be reduced from bHV (Equations 2 and 3) to b
1þ�F HV or

similar (as in Saenz et al. 2010). Alternatively, cellular exposure
to interferon could have prolonged effects, with cells becoming
refractory to infection (or further infection) for a period of time
(as in Saenz et al. 2010; Pawelek et al. 2012) and infected cells re-
ducing their viral output for a period of time following exposure.
A third effect of IFN-a is to facilitate the recruitment of innate
effector cells, which would act to clear infected target cells,
leading to an overall effective increase in the rate at which tar-
get cells decline. Here, for simplicity, we consider only two di-
rect effects of interferon: the effect of these molecules on
reducing cell susceptibility to infection and on reducing the rate
of viral production from infected cells, assuming that interferon
has prolonged effects on cells. Our innate immune response
model is given by Equation (13) and the following system of
equations:

dH
dt
¼ �aP� uFH (14)

dR
dt
¼ uFH (15)

dV
dt
¼ kP� gV � bHV (16)

dP
dt
¼ bHV � aP� a

1þ kð Þ
k

P2

H
� uFP: (17)

Here, H is the total number of currently susceptible target cells
(including infected and uninfected target cells), R is the total
number of target cells that are currently refractory to further in-
fection (including uninfected cells and already infected cells), V
is again the amount of free virus, and P is the total number of vi-
ral particles across susceptible target cells. The parameter u

quantifies the per capita rate at which interferon makes cells re-
fractory to infection. This model formulation assumes that all
susceptible cells, whether uninfected or infected, become re-
fractory to infection (or further infection) at similar rates, that
refractory cells stay permanently refractory, and that no virus is
produced from refractory cells. This latter assumption effec-
tively reduces the overall rate at which the total infected cell
population produces virus as a result of interferon exposure.
Model Equations (13–17) assume analogous effects of interferon
as the within-host microparasite model presented in Saenz
et al. (2010), while adopting assumptions of linear scaling be-
tween cellular MOI and infected cell mortality rate, between cel-
lular MOI and viral production rate, and between cellular MOI
and the probability of cellular interferon production. The model
does not incorporate the possibility for refractory cells to be-
come resusceptible to viral infection within the time period of
an acute infection. Further, it does not incorporate the role that
other cells of the innate immune response (such as NK cells)
may play in clearing infected cells. Finally, it does not incorpo-
rate the role that the adaptive immune response may play in
terminating the infection. All three of these assumptions have
been previously incorporated into a within-host model for influ-
enza infection (Pawelek et al. 2012). We do not incorporate these
processes in Equations (13–17) because our goal here is simply
to demonstrate through several examples how the within-host
macroparasite model can be developed under a set of virological
assumptions. We note, however, that in some cases, incorpora-
tion of a process into the macroparasite model formulation may
be more difficult than into a microparasite model formulation.
For example, allowing refractory cells to become resusceptible
to infection (as in Pawelek et al. 2012) and to again produce viral
output, would be difficult without adding additional variables,
since the (currently untracked) distribution of the number of in-
ternalized particles within refractory cells is expected to be dif-
ferent from the distribution of the number of internalized
particles within susceptible cells.

3. Results

Here, we fit the within-host macroparasite models presented
above to empirical within-host data, highlighting key quantities
that can be calculated from these models that within-host
microparasite models have difficulty providing. The within-
host data we fit to are from ponies that have been experimen-
tally infected with influenza A virus subtype H3N8. The data
have been analyzed in a number of previously published studies
(Saenz et al. 2010; Pawelek et al. 2012), and include viral load
measurements and IFN-a fold change measurements. As a point
of comparison, we also consider existing, comparable micropar-
asite model formulations. We start with fitting target cell lim-
ited models and then move to considering models that
incorporate the immune response.
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3.1 Target cell limited models

The classic target cell limited microparasite model is given by
the following three equations: dT

dt ¼ �bTV, dI
dt ¼ bTV � aI, and

dV
dt ¼ kI� gV, where T is the number of susceptible (and unin-

fected) target cells, I is the number of infected target cells, and V
is free virus. To estimate model parameters, we use a maximum
likelihood approach that accommodates below the limit of de-
tection measurements (Supplementary Text S3). Instead of fit-
ting all parameters and initial conditions individually for each
pony, we fix some and estimate others as either group-level or
individual-level parameters. Specifically, following Saenz et al.
(2010) and Pawelek et al. (2012), across all ponies, we set the ini-
tial number of target cells T(0) to 3.5 � 1011 cells, and the initial
number of infected cells I(0) to zero. We further constrain the
number of model parameters to be estimated by assuming that
the viral production rate k is the same across ponies and that
the infected cell death rate a is the same across ponies. We al-
low the viral clearance rate g, the viral infectivity rate b, and the
initial viral load V(0) all to differ between ponies.
Supplementary Table S1 shows maximum likelihood parameter
estimates of this target cell limited microparasite model, by
pony. We calculated the log-likelihood of the model fit across
the ponies to be �55.57. With the number of estimated parame-
ters and initial conditions being twenty-one in all, the akaike in-
formation criterion (AIC) score for the model fit was 151.15.

We next fit our target cell limited macroparasite model given
by Equations (4), (5), and (7) to these same influenza A/H3N8 vi-
ral load measurements. Prior to fitting this model, we confirmed
that all of its parameters were structurally identifiable
(Supplementary Text S4). Again, due to the limited number of
data points for each pony, we did not attempt to estimate all
model parameters for each pony independently. Instead, we
again set the initial number of target cells (in our case, given by
the variable H) to 3.5 � 1011 cells, and further set the initial num-
ber of internalized virions P to zero. This latter assumption cor-
responds to the assumption made in previous models of zero
initially infected cells. We further constrained the per-particle
production rate k, the per-particle cellular mortality rate a, and
the dispersion parameter k to be the same across infected
ponies. We let the viral clearance rate g, the viral infectivity rate
b, and the initial amount of free virus V(0), differ across ponies,
since in part these parameters reflect host-specific characteris-
tics or phenotypes related to a host’s immune history. Using the
same maximum likelihood approach, we thus fit twenty-one

parameters in total, including initial conditions. Under these
constraints, all parameters of this basic model were practically
identifiable. Table 1 lists the estimated model parameters, by
pony. The within-host basic reproduction number was esti-
mated to be in the range of 16.9–18.8 across the ponies. We cal-
culated the log-likelihood of the model fit across the ponies to
be �50.04. With the number of estimated parameters and initial
conditions being twenty-one in all, the AIC score for the model
fit was 142.07. As such, the target cell limited macroparasite
model fit the viral load measurements significantly better than
the target cell limited microparasite model. Fig. 2A shows the
viral load measurements from the ponies, along with the fit of
the classic target cell limited microparasite model and the tar-
get cell limited macroparasite model. Fig. 2B shows host target
cell dynamics for each of these two models. The fits of the two
models show why the macroparasite model was statistically
preferred over the microparasite model. The microparasite
model does not reproduce the observed biphasic (fast, then
slow) viral decline in this dataset and has trouble hitting peak
viral loads. Indeed, this target cell limited model has been criti-
cized for its failure to reproduce these two features (Saenz et al.
2010; Pawelek et al. 2012), among other criticisms such as its
fundamental assumption that target cells are limiting (Saenz
et al. 2010). In contrast, the target cell limited macroparasite
model is able to reproduce these two key features of the ob-
served within-host influenza dynamics when fit to the observed
data. How robust these two features are across datasets is a sep-
arate question that falls outside the scope of the analysis pre-
sented here. It is worthwhile to note, however, that there is
little indication that humans infected with influenza A virus ex-
hibit high peak viral loads for a short duration of time, or that
their viral decline is biphasic, based on data from human H1N1
and H3N2 challenge studies (Baccam et al. 2006; Carrat et al.
2008). And while a recent study in mice also indicated that viral
decline is biphasic, it appeared to be characterized by slow, then
fast viral decline (Smith et al. 2018), rather than the other way
around. Here, we are not suggesting that the patterns observed
in this dataset apply to other hosts experiencing infection with
influenza A virus, but simply demonstrate that the target cell
limited macroparasite model can fit specifically the equine in-
fluenza viral load measurements better than the target cell lim-
ited microparasite model.

To understand why the macroparasite model can reproduce
these two key features of the observed viral dynamics, we note

Table 1. Parameter estimates for the target cell limited macroparasite model, for each of the six ponies. The model is given by Equations (4),
(5), and (7). “The ponies’ within-host basic reproduction numbers are also listed.”

Pony

1 2 3 4 5 6

Parameter or
initial condition

Units Estimated or set Value

H(0) Cells Set 3.50Eþ11
log10(V(0)) log10 RNA copies ml�1 NS Estimated (individually) �2.06 �6.04 �2.75 �3.78 �1.97 �3.02
P(0) Internalized particles Set 0
k RNA copies ml�1 NS day�1 Estimated (by group) 26.75
a Day�1 Estimated (by group) 1.42
k Estimated (by group) 0.89
g Day�1 Estimated (individually) 2.91Eþ03 6.92Eþ01 1.76Eþ06 6.44Eþ02 2.29Eþ01 3.13Eþ06
b (RNA copy)�1 ml NS day�1 Estimated (individually) 7.54E-05 3.73E-06 4.48E-05 3.40E-06 6.57E-05 1.74E-04
R0 18.84 18.84 16.94 18.83 18.84 17.91
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that the model formulation allows us to easily calculate the
time-varying mean MOI (Fig. 3A). The mean MOI in this model is
simply given by the total number of internalized particles di-
vided by the total number of target cells: P/H. Fig. 3A indicates
that, as viral load increases, the mean MOI increases dramati-
cally, and therewith the amount of free virus being produced.
This allows the high viral peaks to be reproduced. Infected cells
with high MOI then experience high mortality rates, leading to a
very rapid decline in viral load and a rapid depletion of target
cells H (Fig. 2B). Mean cellular MOI drops as a result of this rapid
depletion of cells with high MOI. It then remains low because of

low levels of free virus V and thus little opportunity to internal-
ize more virus. The second phase of the viral decline comes
about from the low mortality rate of cells with low MOI.

From the formulation of the model, one can also easily cal-
culate the time-varying proportion of infected cells that are
infected by more than one viral particle (Fig. 3B). This informa-
tion may be useful for characterizing the landscape available to
defective interfering particles, which ‘cheat’ off of wild-type vi-
rus for their own replication (Chao and Elena 2017). One can
also project the frequency of reassortants present in the within-
host viral population by extending the model given by

Figure 2. Target-cell limited within-host model dynamics. (A) Within-host viral dynamics, parameterized by fitting target-cell limited models to influenza A/H3N8 viral

load measurements from experimentally infected ponies (black circles and x’s). The dashed black line shows the limit of detection, and x markers show below the limit

of detection measurements. Colored lines show maximum likelihood fits of the classic within-host target-cell limited microparasite model and of the target-cell lim-

ited macroparasite model. (B) The number of target cells over time for the within-host target-cell limited microparasite model (given by Tþ I) and for the within-host

macroparasite model (given by H).

Figure 3. Dynamics of quantities derived from the target-cell limited within-host macroparasite model. (A) Mean multiplicity of infection (MOI) over time for each of

the ponies shown in Fig. 2A. Mean MOI is calculated as the total number of intracellular particles divided by the total number of target cells, P(t)/H(t), where t is time

since infection. (B) The proportion of infected cells that are infected by more than one viral particle, calculated from the within-host macroparasite model. (C) The frac-

tion of the viral population that is reassortant, shown over the course of infection.
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Equations (4), (5), and (7). Specifically, we can add three addi-
tional equations to the target cell limited macroparasite
model: dH0

dt ¼ �bH0V, dH1;n

dt ¼ bH0Vn � aH1;n � bH1;nV, dVn
dt ¼ kH1;n�

gVn � bHVn. Here, H0 is the number of uninfected target cells,
H1,n is the number of target cells that are infected with a single
non-reassortant viral particle, and Vn is the non-reassortant
free virus population. All other parameters and variables are as
in Equations (4), (5), and (7). The initial conditions for these vari-
ables are H0(0) = H(0), H1,n(0) = 0, and Vn(0) = V(0). The fraction of
the viral population that is reassortant at time t is given by
1� VnðtÞ

VðtÞ . Fig. 3C shows the dynamics of this fraction over the
course of infection. For the inferred parameter values of the tar-
get cell limited macroparasite model, the fraction of the viral
population that is reassortant increases rapidly as mean MOI
increases, saturating at one. Since barcoding of virus is possible,
future studies could thus use frequencies of viral reassortants,
quantified from nasal wash samples, as additional data for esti-
mating within-host macroparasite model parameters. Specifics
about how this would be done properly would need to be
addressed, however, since this model deems all viruses coming
out of a coinfected cell as reassortants. If in an infection, a cell
is coinfected with two viral particles that have been produced
by a single barcoded viral parent, viral output from this cell may
appear as non-reassort virus, despite reassortment most likely
having taken place.

3.2 Within-host models incorporating the immune
response

We now turn to fitting the within-host macroparasite model
that incorporates the innate immune response, given by
Equations (13–17). We compare the fit of this model to those of
two previously proposed within-host microparasite models: the
model proposed by Saenz et al. (2010) and the one proposed by
Pawelek et al. (2012). Again, for our model, we forced a subset of
the model parameters to be the same across the ponies, while
letting other parameters be pony-specific.

The Saenz et al. model (Saenz et al. 2010) is an eight-dimen-
sional set of ordinary differential equations with variables T
(susceptible target cells), E1 (eclipse phase cells that have not
been exposed to interferon), W (pre-refractory cells), E2 (eclipse
phase cells that have been exposed to interferon but are not yet
refractory), R (refractory cells), I (infected cells), V (free virus),
and F (interferon). The key component of this model is the intro-
duction of a class of cells that are refractory to viral infection
following exposure to interferon. Their model, as structured
and parameterized, assumes that IFN-a does not affect viral pro-
duction from already infected cells. The full set of model equa-
tions and list of parameters are provided in Saenz et al. (2010).
Note that in their analysis, Saenz et al. set initial conditions for

interferon-a F(0) to zero. Since interferon-a measurements are
in units of fold change, we (and Pawelek et al.) instead set F(0) at
one. To estimate their parameters, Saenz et al. used a weighted
non-linear least squares procedure that incorporated viral load
measurements, IFN-a fold change measurements, and an esti-
mate that only 27 per cent of host cells were depleted by the
end of an infection. We extended the likelihood function used
for fitting the target cell limited models to incorporate both IFN-
a measurements and the 27 per cent target cell depletion esti-
mate (Supplementary Text S3). Using this likelihood function,
we calculated the log-likelihood of the Saenz et al. model to be
�255.69 (Table 2). We further calculated the log-likelihood of the
Saenz et al. model to be �98.20 when considering only viral load
measurements and IFN measurements (Table 2). With the num-
ber of estimated parameters and initial conditions being thirty-
six in all, the AIC score for the model fit was 583.37 (with target
cells in the log-likelihood function) and 268.39 (without target
cells in the log-likelihood function). Fig. 4 shows the viral load
dynamics, interferon dynamics, and dynamics of the total num-
ber of target cells (T þ E1 þW þ E2 þ R þ I) for this model fit.

The Pawelek et al. model (Pawelek et al. 2012) is a five-
dimensional set of ordinary differential equations with varia-
bles T (susceptible target cells), I (infected cells), R (refractory
cells), V (free virus), and F (interferon). The key component of
this model is that refractory cells become resusceptible to infec-
tion after some amount of time. Further, the model includes an
adaptive immune response, which ultimately allows the viral
infection to be cleared. The model, as structured, assumes that
IFN-a does not affect viral production from already infected
cells. The full set of model equations and parameter estimates
are provided in Pawelek et al. (2012). We noted that the time of
the adaptive immune response onset (l) and the estimated ini-
tial viral loads were not explicitly listed in the published paper,
and therefore requested these from the authors. The values for
l are 7, 4, 6, 3, 5, and 4 days post infection, respectively. The val-
ues for log10(V(0)) are 0.63, �8.77, �5.70, �2.04, �2.16, and �7.68,
respectively. The authors estimated their model’s parameters
by minimizing the root mean square between the data points
and model predictions. The data points they considered were
viral load measurements and IFN-a fold change measurements.
They did not use the 27 per cent target cell depletion estimate
that Saenz et al. used to fit their model. Using our likelihood
function, we calculated the log-likelihood of the Pawelek et al.
model to be �258.00 (with target cells in the likelihood function)
and �92.61 (without target cells in the likelihood function).
With the number of estimated parameters and initial conditions
being sixty in all, the AIC score for the model fit was 635.99
(with the target cell component) and 305.21 (without the target
cell component) (Table 2). Fig. 4 shows the viral load dynamics,
interferon dynamics, and dynamics of the total number of

Table 2. Model comparison using AIC. For each of the three models we compare, the table lists the complexity of the model, the models’ log-
likelihood values (as calculated using the likelihood expressions provided in the Supplementary Material), and AIC values. The boxed cells in-
dicate the preferred model.

Model Model complexity Components of
likelihood calculation:

Viral load,
IFN dynamics

Viral load, IFN dynamics,
final target cells

Saenz et al. (2010) 36 estimated
parameters

Log-likelihood: �98.20 �255.69
AIC: 268.39 583.37

Pawelek et al. (2012) 60 estimated
parameters

Log-likelihood: �92.61 �258.00
AIC: 305.21 635.99

Macroparasite model with
innate immune response

29 estimated
parameters

Log-likelihood: �103.07 �260.69
AIC: 264.14 579.38
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target cells (T þ I þ R) for this model. Compared to the Saenz
et al. model, the Pawelek et al. model better reproduces the viral
plateau, as well as the smaller, secondary viral peak that is ob-
served in the majority of the ponies. The ability of the Pawelek
model to capture these features is the reason for why the log-
likelihood value of the parameterized Pawelek et al. model is
higher than that of the Saenz et al. model. The likelihood of the
Pawelek et al. model becomes comparable to that of the Saenz
et al. model, however, when target cell depletion is incorporated
into the likelihood calculation. This is because the second,
fourth, and sixth ponies have the majority of their target cells
depleted under the parameterized Pawelek et al. model.

We now turn to the macroparasite model incorporating the
innate immune response, given by Equations (13–17). This
model is a five-dimensional set of ordinary differential equa-
tions with variables H (target cells), R (refractory cells), P (inter-
nalized viral particles), V (free virus), and F (interferon). The key
component of this model is that any cell exposed to interferon
(whether infected or uninfected) will become refractory to fur-
ther infection. Further, the model assumes that refractory cells
are permanently refractory, and while refractory, cells do not
produce virus. To fit this model, we constrained the parameters
a, u, k, d, and k to be the same across the ponies because these
parameters quantify infected cell phenotypes that we expect to
be common across individuals. We let parameters g, b, q, and
V(0) differ across ponies, due to host-specific factors. We set
the other initial conditions to be: T(0) = 3.5 � 1011 cells as be-
fore, R(0) = 0, P(0) = 0, and F(0) = 1. Again, interferon levels are in
units of fold change. Table 3 provides parameter estimates for
this model, with parameters estimated using the likelihood
function that incorporated only viral load measurements and
IFN measurements. Notably, the likelihood function that addi-
tionally incorporated the 27 per cent target cell depletion esti-
mate gave rise to almost identical parameter values (results
not shown). We calculated the log-likelihood of this model fit

across the ponies to be �260.69 (with the target cell compo-
nent) and �103.07 (without the target cell component). With
the number of estimated parameters and initial conditions be-
ing twenty-nine in all, the AIC scores for the model fit were
579.38 (with the target cell component) and 264.14 (without the
target cell component). Both of these AIC scores are signifi-
cantly lower than those of Pawelek et al. and slightly lower
than those of Saenz et al. (Table 2). Fig. 4 shows the viral load
dynamics, interferon dynamics, and dynamics of the total
number of target cells (H þ R) for this model fit. In
Supplementary Fig. S6, we show this model’s dynamics alone
(without the Saenz et al. and Pawelek et al. model dynamics).
The macroparasite model can quantitatively reproduce fea-
tures of the viral load and interferon-a measurements, without
depletion of target cells to unreasonable levels. Here, the very
rapid initial viral decline results from several processes: the
cellular input-dependent mortality rate of infected cells, the
rapid removal of susceptible target cells H through exposure to
interferon-a, and the lack of viral production from refractory
cells. The second, slower phase of viral decline results from the
slow removal of the remaining infected cells that have low
MOI. The within-host basic reproduction number, ignoring the
effect of positive IFN levels at the onset of infection, ranged be-
tween 20.2 and 31.0 across the ponies. A slightly modified R0

calculation that takes into consideration that initial interferon
fold change levels are set at one leads to a range of R0 estimates
between 9.9 and 15.2. Because the macroparasite model we
consider does not incorporate refractory cells becoming resus-
ceptible to further infection, it does not recapitulate the sec-
ondary, lower viral peak that is seen in several of the ponies.
Incorporating this process would significantly complicate this
model, for reasons elaborated upon above. Whether the second
viral peak is due to a replenishment of susceptible target cells
or due to some other, currently unmodeled, process is an open
question.

Figure 4. Within-host dynamics from the three considered innate immune response models. (A) Model-simulated within-host viral dynamics, with data and limit of

detection shown as in Fig. 2A. (B) Model-simulated interferon-a dynamics, along with IFN-a fold change measurements. (C) Model-simulated target cell dynamics.

Dashed black line shows an estimate for the final number of target cells, given by a 27 per cent reduction in the number of target cells (Saenz et al. 2010).
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4. Discussion

Here, we have developed a new class of within-host models for
understanding the in vivo dynamics of viral infections. This new
class of models differs from existing within-host models in that
it allows for target cells to be variably infected and for the de-
gree of cellular input to impact the phenotypes of infected cells,
such as their death rate and the rate at which they produce vi-
rus. Despite allowing for cellular coinfection dynamics, these
models remain low-dimensional. This addresses existing con-
cerns in the literature about the scalability of within-host mod-
els that allow for cellular coinfection (Phan and Wodarz 2015).
While we have developed and applied these within-host models
to acute viral infections, the structure of these models is imme-
diately applicable to chronic viral infections. When applied to
chronic infections, the terms we lost for the replenishment and
natural death of target cells (see Section 2) would simply need
to be reintroduced.

The structure of the within-host models we derived here co-
opt the structure of epidemiological macroparasite models.
Based on empirical data, those models generally assume that
host death rates scale linearly with macroparasite burden and
that the rate of egg release from infected hosts similarly scales
linearly with macroparasite burden. The within-host models we
fit similarly adopt these scaling relationship assumptions, al-
though other scaling assumptions can be adopted while retain-
ing the desirable low-dimensionality of the model equations.
Clearly, the structure of the within-host model should reflect
empirically supported relationships between cellular input and
cellular phenotypes. To date, very few studies have attempted
to empirically quantify these relationships, making the appro-
priate choice of model structure difficult to decide upon. For in-
fluenza, the studies that do exist have shown that the timing
and amounts of viral yield depend critically on cellular input,
and that cumulative viral yield generally increases with cellular
input (White et al. 1965; White and Cheyne 1966). Intriguingly,
these results stand in contrast to the current structure of the

model that we have presented. This is because, if we assume
that both the viral production rate and the cell death rate scale
linearly with cellular input, the total cellular output of an
infected cell should be independent of its MOI i, with total cellu-
lar output being given by: ki=ai ¼ k=a. The empirically deter-
mined relationship between higher cellular output with higher
cellular input therefore seems to indicate that cellular death
rates must scale less than linearly with cellular input and/or
that viral production rates must scale faster than linearly with
cellular input. The latter relationship, if empirically supported,
would provide tantalizing evidence for viral cooperation within
cells playing a role in within-host viral dynamics, an idea that
has recently gained traction (Brooke 2017; Dı́az-Mu~noz,
Sanjuán, and West 2017; Sanjuán 2017).

A key feature of epidemiological macroparasite models is
the possibility of nematode overdispersion across hosts.
Parasite overdispersion has considerable empirical support,
with the overwhelming majority of macroparasite distributions
studied having a variance to mean ratio exceeding one and an
estimated dispersion parameter k of less than one (Shaw and
Dobson 1995). A more recent analysis further indicates that ob-
served levels of parasite overdispersion can be attributed al-
most entirely to host heterogeneity in parasite exposure or host
heterogeneity in susceptibility to infection (Poulin 2013). Here,
in the context of within-host viral dynamics, we also found sta-
tistical support for very high levels of overdispersion, with a dis-
persion factor k estimate of 0.89 in the target-cell limited model
(Table 1) and an estimate of k = 0.30 in the innate immune re-
sponse model (Table 3). This overdispersion could similarly re-
flect variation in target cell susceptibility to infection. It could
also reflect heterogeneity in viral exposure, likely due to the in-
trinsically spatial aspect of influenza virus spread within
infected hosts (Gallagher et al. 2018). Finally, as described in
Supplementary Text S2, overdispersion could also result from
the distribution of time that cells remain in the eclipse phase
prior to becoming productively infected. Regardless of the
causes of viral overdispersion across target cells, the

Table 3. Parameter estimates for the within-host ‘macroparasite’ model incorporating the innate immune response, for each of the six ponies.
The model is given by Equations (13)–(17).

Pony

1 2 3 4 5 6

Parameter of initial
condition

Units Estimated or set Value

H(0) Cells Set 3.5Eþ11
log10(V(0)) log10 RNA copies ml�1 NS Estimated (individually) �0.35 �6.01 �1.34 �4.19 �3.89 �6.78
F(0) Fold change Set 1
R(0) Cells Set 0
P(0) Internalized particles Set 0
k RNA copies ml�1 NS day�1 Estimated (by group) 30.36
a Day�1 Estimated (by group) 0.98
k Estimated (by group) 0.30
u (IFN fold change)�1 day�1 Estimated (by group) 1.01
d Day�1 Estimated (by group) 1.86
g Day�1 Estimated (individually) 2.46Eþ06 4.42Eþ04 3.16Eþ07 2.21Eþ04 4.38Eþ01 3.95Eþ04
b (RNA copy)�1 ml NS day�1 Estimated (individually) 2.22E-05 7.92E-07 1.69E-04 3.36E-07 2.86E-05 1.15E-06
q IFN fold change day�1 cell�1 Estimated (individually) 6.26E-11 7.24E-11 3.08E-11 1.11E-10 2.62E-10 2.91E-10
R0 (ignoring

effect of IFN)
23.54 26.72 20.18 26.08 30.98 28.21

R0 (considering
effect of IFN)

11.59 13.15 9.93 12.84 15.25 13.88
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consequences of viral overdispersion are that the majority of
infected cells are multiply infected, at least over some duration
of the infection (Fig. 3B). This gives rise to the expectation of
considerable levels of viral reassortment within infected hosts
(Fig. 3C), consistent with findings from a guinea pig study that
found robust reassortment in vivo between phenotypically neu-
tral strains that differed from one another only by silent muta-
tions (Marshall et al. 2013). In contrast, however, analysis of
viral sequence data from a human challenge study indicated
very limited effective reassortment, perhaps because of multi-
ple initiating foci of infection (Sobel Leonard et al. 2017).

In addition to its effects on viral population dynamics, viral
overdispersion across target cells would have important evolu-
tionary consequences. First, reassortment between genetically
and phenotypically distinct strains could bring together benefi-
cial mutations on different gene segments or allow for a more ef-
fective purging of deleterious mutations. Second, viral
overdispersion effectively produces ‘collective infectious units’
(Sanjuán 2017). The existence of these collective infectious units
will put selection pressures on a virus to evolve cooperative
traits, or, conversely, non-cooperative traits that would allow a
virus to ‘cheat’. In either case, the importance of quantifying cel-
lular MOI is clear, as MOI will determine the distribution of viral
group sizes, which would in turn affect the types of ‘social inter-
actions’ experienced by viral populations (Dı́az-Mu~noz, Sanjuán,
and West 2017). The within-host macroparasite models pre-
sented here provide an approach for estimating the degree of vi-
ral overdispersion from fits to viral data. More generally, these
models allow for the reality of cellular coinfection dynamics to
be integrated into within-host disease models, in a scalable, low-
dimensional fashion. While their general formulation has been
developed here, these models require assumptions to be made
between cellular input and various cellular phenotypes.
Empirical studies examining the structure of these relationships
is the next critical step to the continued development of these
models, and towards their use in better understanding the
within-host and evolutionary dynamics of viral infections.
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